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Abstract of the Dissertation

Local Parity Violation in the Strong

Interactions and Parton Collectivity in Au+Au

Collisions at RHIC

by

Dhevan Gangadharan

Doctor of Philosophy in Physics

University of California, Los Angeles, 2010

Professor Huan Z. Huang, Chair

Relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC)

provide a unique opportunity to study physics under very extraordinary energy

densities which only exist in the core of very dense stars and during the time of a

Big Bang. Azimuthal angular correlations of particles at the Solenoidal Tracker

At RHIC (STAR) allow us to study the possibility of new physics which may

arise in these situations. Here we study two types of azimuthal correlations with

respect to the impact parameter of the heavy-ion collision.

Azimuthal correlations which are asymmetric across the reaction-plane are

shown to be sensitive to the local violation of parity in the strong interactions.

Violation of parity in the weak interactions has been experimentally observed in

a variety of physical systems since its discovery in 1956. It has never been exper-

imentally observed in the strong interactions. The formalism involved with its

breaking also carries over into electro-weak theory where instead of parity being

broken, baryon+lepton number conservation is broken. This has implications on

the matter anti-matter asymmetry we observe in the universe.

xvi



A measurement of a correlation function directly sensitive to local parity

violation in the strong interactions is found to yield a signal in partial qualitative

agreement with theoretical expectations. No known physics background from

existing dynamical models of heavy-ion collisions has been found to mimic the

signal. However, upon closer inspection of the correlation as a function of the

observed charge separation, we find the signal to be even stronger over a subset

of events with zero charge separation. As the signal must be caused by non-zero

charge separation to be P-odd, its existence in events with zero charge separation

suggests alternate P-even explanations. We conclude that since the signal is even

larger in events with zero charge separation we find no convincing evidence for

local parity violation in the strong interactions at RHIC.

Azimuthal angular correlations which are symmetric across the reaction-plane

and across the perpendicular to the reaction-plane (e.g. v2) are shown to be

sensitive to the signatures of a 5th state of matter known as the Quark Gluon

Plasma (QGP). Elliptic flow (v2) for π
±, K±, K0

s , p
+, Λ, Ξ± vs. pt is measured.

At low pt all particles show a fair agreement with non-viscous hydrodynamical

models which include a 1st order phase transition to a QGP phase. This seems to

suggest that some degree of thermalization is attained for low pt particles in 200

GeV Au+Au collisions. At high pt, a non-viscous hydrodynamical description of

the data clearly breaks down. This indicates the existence of significant viscosity

and/or the lack of thermalization at high pt.

At high pt we also observe separate v2 saturation levels for baryons than for

mesons which can be remarkably well accounted for via constituent quark number

scaling. This suggests that the matter produced in 200 GeV Au+Au collisions is

composed of deconfined quarks exhibiting collective behavior.

xvii



CHAPTER 1

Relativistic Heavy-Ion Collisions

The collision of ions of appreciable mass at kinetic energies much larger than

their mass energies is referred to as a relativistic heavy-ion collision. Perhaps the

most interesting feature of these collisions is the tremendous and unprecedented

energy densities involved. To date, the highest energy density achieved in a

heavy-ion collision at the Brookhaven National Laboratory is ≈ 1038J/m3. To

put this into perspective, a supersonic jet traveling at top-speed and at maximum

takeoff weight reaches an energy density of only ≈ 1010J/m3. Thus, a relativistic

heavy-ion collision is roughly 1028 more energetically dense than even this exotic

example. Clearly these collisions provide us with the unique opportunity to study

matter and energy and their interactions under very extraordinary circumstances.

1.1 Initial Stages of the Collision

1.1.1 Initial Geometry of Collision

The initial state of a heavy-ion before its collision with another heavy-ion may

be parameterized by 5 numbers: Energy, polarization, proton number, neutron

number, and the impact parameter (
√
s, P, Z, A − Z, b). Heavy-ion beams are

typically unpolarized so that P=0. The impact parameter, b, is given by the

distance between the centers of the two nuclei. It must also be noted that since
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these nuclei travel relativistically, they experience Lorentz contraction along the

direction of propagation. At the highest energies achieved at the relativistic

heavy-ion collider (see chapter 2) the Lorentz factor reaches 100. At that point

the size of the nucleus is contracted by a factor of 1/100 along its direction

of propagation. Thus the picture of a collision we have is more like two disks

colliding rather than two spheres. This is illustrated in figure 1.1. Nucleons

Figure 1.1: Lorentz contracted nuclei. Left-panel and right-panel show the two

nuclei just before and during the moment of the collision, respectively.

of the colliding nuclei may be put into one of two categories. Those within

the overlapping region of the disks are called participant nucleons, while those

outside of this region are called spectator nucleons. Thus, for a collision between

two identical nuclei with b=0 we have a maximum number of participant nucleons

and a minimum number of spectators. These are called central collisions while

the opposite (b ∼ twice gold ion radius) are called peripheral collisions.

In experiment the impact parameter is not an observable quantity. How-

ever, the observed multiplicity of particles is related to the impact parameter

through the Glauber model of nucleus-nucleus collisions. The degree to which

2



nuclei collide head-on is reported as the collision centrality. The top 10% of the

multiplicity distribution (central collisions) is reported as 0-10% centrality. The

bottom 10% of the multiplicity distribution (peripheral collisions) is reported as

90-100% centrality. This percentage terminology will be used throughout the rest

of the dissertation.

1.1.2 Initial Conditions

Particle (parton) production during the earliest moments just after the collision

provides for the initial conditions of the phase of matter subsequently formed.

In principle one may expect partons to originate from two possible sources. In

one case, a parton may originate from an incident nucleon which was broken

apart into its parton constituents. In the other case, a parton may originate from

the spontaneous parton anti-parton emission out of the vacuum. An important

distinction between the two is that while in the first case baryon number is

in general introduced into the system, in the second case no baryon number

is introduced. Thus the relative magnitudes of M (multiplicity observed in a

detector) and Nbaryon (baryon number observed in a detector) will provide insight

into which parton production source dominates.

Heavy-ion data from three different accelerators: AGS (Au+Au,
√
s = 5GeV ),

SPS (Pb+Pb,
√
s = 17GeV ), and RHIC (Au+Au,

√
s = 200GeV ) show an inter-

esting feature for dNnet−proton/dy versus y in figure 1.2 [Bea04]. All data is from

the top 5% most central collisions and errors are both statistical and systematic.

The data is symmetrized across yCM=0. Nnet−proton stands for the net-proton

number (Np − Np̄) and y stands for the particle rapidity. The net-proton num-

ber may be regarded as proportional to the net-baryon count, Nbaryon. It is

observed that the net-baryon rapidity density decreases with increasing collision

3



Figure 1.2: Net-proton number versus rapidity

energy. This suggests that at higher energies fewer incident quarks are them-

selves becoming part of the final particles observed in the detector; the nucleus

has become transparent. This has a dramatic effect on our picture of nucleus

nucleus collisions. At high enough energies, rather than incident quarks stopping

and scattering outward, we have the quarks of the two nuclei passing by each

other and inducing particle production through gluonic interactions!

To understand how parton production occurs in this scenario we look to the

Bjorken picture of the space-time evolution of a high energy heavy-ion collision

[Bjo83]. The target and projectile nucleus are again thought of as Lorentz con-

tracted disks. After passing through each other, a coherent classical field is left

in between the receding nuclei. This is illustrated in figure 1.3.

The receding nuclei, as we learned from figure 1.2, carry away most of the

incident baryon number. The produced field in between the receding nuclei may

also be thought of as a collection of excited virtual quanta. In principle, these

4



Figure 1.3: Left: Lorentz contracted nuclei before the collision. Right: After the

collision a coherent classical field is left behind(gray region)

quanta may be gluons, current quarks, or even constituent quarks or hadrons

provided that their formation times are small enough. The exact mechanisms

for the production of these quanta is the subject of various models, i.e. Color-

string breaking, Color Glass Condensate, Perturbative QCD. After some time,

these excited virtual quanta will de-excite into real quanta and provide the initial

conditions for an equilibrium phase. The equilibrium phase is the only realm

where hydrodynamics has validity. Figure 1.4 illustrates the Bjorken picture

of the space-time longitudinal evolution of high energy heavy-ion collisions. The

diagonal straight lines represent the speed of light (∼spectator nuclei trajectories)

and the hyperbolas indicate curves of constant proper-time.

1.2 The Quark-Gluon Plasma

Quantum chromodynamics(QCD), the theory of strong interactions, is a non-

Abelian gauge field theory. In 1973 it was shown by Gross, Wilczek, and Politzer
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Figure 1.4: Bjorken’s space-time picture of the longitudinal evolution of the pro-

duced medium in a heavy-ion collision.

[GW73] that such interacting-field theories become free-field theories at high en-

ergies. In more precise words, the coupling constant αs of QCD decreases with

increasing momentum transfer. This feature has been experimentally observed

and is shown in figure 1.5. These data have the simple interpretation that quarks

and gluons cease to be confined inside hadrons at sufficiently high temperatures.

This is called asymptotic freedom or deconfinement. This transition from con-

finement to deconfinement may also be seen with lattice QCD calculations where

space-time is treated as a discrete lattice (LQCD) instead of a continuum, thereby

removing the ultraviolet divergences of QCD and simplifying the equations to be

solved. Results for the pressure (P) of strongly interacting matter divided by

temperature (T) to the fourth–which is proportional to the number of degrees of

freedom–versus temperature are shown in figure 1.6 [Kar02]. From this figure it

is clear that there is a sharp rise in the number of degrees of freedom (a phase

transition) near T ≈ 160 MeV. The phase beyond TC = 160 MeV is a decon-

fined state of quarks and gluons, which, if equilibrated, constitutes a new state of

matter–a 5th state–and is called a Quark-Gluon Plasma(QGP). A Quark-Gluon
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Figure 1.5: Running of the coupling constant. Data points come from a variety

of experiments [Ams08]. The dotted line shows a fit with its ±1σ limits as the

solid lines. The parameter µ is formally regarded as the renormalization energy

point, but for the purpose of this section it may be regarded simply as the energy

scale.

Figure 1.6: LQCD calculation for a variety of choices of dynamical quark flavors.

Plasma is analogous to an ordinary plasma in that nucleons (atoms) have dis-

associated into their constituent quarks-gluons (electrons-nuclei). It is believed
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to exist in a heavy-ion collision in the region bounded by the two hyperbolas of

figure 1.4. It should be noted that the saturation observed after TC in figure

1.6 demonstrates that although the quarks and gluons are deconfined, they are

not completely free from interactions with each other since the Stefan-Boltzmann

limit is far above the curves shown. Thus, a QGP created in a heavy-ion collision

may actually be a strongly interacting QGP or sQGP.

1.3 Vacuum Transitions

Another interesting feature of QCD to be explored in heavy-ion collisions is the

subject of QCD vacua and their transitions. A quantum state of lowest energy

(local or global) is termed vacuum. A vacuum is not to be thought of as empty

space devoid of matter and energy but rather a state of quantum fluctuations

which may bring matter in and back out of existence. Through E = mc2 we

know that matter can be created from pure energy and vice-versa. In Quantum

Field Theory (QFT) a particular vacuum state may be parameterized by an

angle θ. There are an infinite number of vacua in QCD, each corresponding to

a different local minimum of energy. However, the true vacuum of QCD is given

by θ = 0, and is the absolute minimum of energy [WV84]. The other vacua are

metastable.

A particular vacuum state can be parameterized by the Chern-Simons num-

ber, NCS, which is a certain spatial integral over the gluon fields Aa
µ existing in

the vacuum [Dia03], see chapter 6. Under the influence of the very large en-

ergy densities created in heavy-ion collisions, the vacuum may actually undergo

a transition to another vacuum with a different NCS. Perhaps the most interest-

ing type of transitions which may occur are the very “large” transitions of the

gauge fields (Aa
µ) which are parameterized by the so called Winding numbers and
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are given by integers. A schematic diagram illustrating the potential energy of

the gluon field of QCD is given in figure 1.7. Each vacuum state or minimum of

Figure 1.7: Potential energy of the gluon field

potential energy is given by a different NCS. The potential energy (vertical axis)

is seen to be periodic in one direction of functional space and oscillator like in

all other directions (remaining axis). One very interesting feature of all non-zero

NCS states is that they violate the symmetry of parity (P-odd) in the strong

interactions. This will be discussed in much greater detail in chapter 6.

1.4 Implications for Cosmology

Besides relativistic heavy ion collisions, the phenomena of the QGP and vacuum

transitions discussed in the preceding sections may also occur in two other places:

The early universe (≈ 10−5sec after the Big Bang), and in compact stars. There-

fore, by studying relativistic heavy ion collisions we may also be learning about

the rare form of matter created both in an early universe and in compact stars

where energy densities are enormous.
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1.4.1 Early Universe

Just after the Big Bang the Universe exhibited its largest number of symmetries.

As the Universe expanded and cooled many of these symmetries were broken one

by one, each at its own characteristic temperature [YHM05]. One of the first

phase transitions to take place after the inflationary period was the electroweak

phase transition at T ≈ 200 GeV. After this point the electromagnetic and weak

force weak became different manifestations of a previously singular phenomenon.

This is also the point where the present asymmetry between matter and anti-

matter may have arisen and where the heaviest particles such as the Higgs boson,

weak bosons(W±, Z0), heavy quarks(t, b and c), and the heavy lepton(τ), would

have decayed into lighter particles. Next, at around T ≈ 170 MeV(≈ 105 times

hotter than the center of the Sun) the QCD phase transition took place. This is

where chiral symmetry was spontaneously broken and quarks/gluons combined

to form hadrons (hadronization). Numerous other transitions occurred latter on

but are not of interest here. The stage of interest here is 200 GeV> T >170 MeV,

and is where the QGP and metastable P-odd domains were supposed to exist.

1.4.2 Compact Stars

A QGP is also hypothesized to exist in the cores of neutron stars (a subset of com-

pact stars) [YHM05]. The content of neutron star cores has great consequences

on their structure, cooling rate, and rotation. Unlike the medium created in high

energy heavy-ion collisions, neutron stars have very high baryon number. A chart

of T versus baryon chemical potential, µB, is shown in figure 1.8. Relativistic

heavy-ion collisions are supposed to reach into the upper-left of the plot where the

temperature is high and the baryon chemical potential is low. Neutron stars exist

in the lower-right region where the temperature is low but the baryon chemical
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potential is high.

Figure 1.8: QCD Phase Diagram

1.5 Dissertation Outline

This dissertation is organized into seven chapters. The first chapter gives a very

broad introduction to the physics of heavy-ion collisions. It focuses on two spe-

cific issues of QCD: the QGP and vacuum transitions. Chapter 2 introduces the

Brookhaven accelerators built to study the physics of QCD under the extreme

energy densities of high energy particle collisions. Chapter 3 introduces the de-

tector at Brookhaven used in this thesis to study heavy-ion collisions. Chapter

4 introduces the concept of angular anisotropy and how different Fourier com-

ponents of it may be used to search for the QGP and metastable P-odd vacua.

Chapter 5 discusses the reconstruction of three weak decay particles(K0
S, Λ, Ξ)–
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some/all of which can be used to access both issues of interest. Chapters 6 and

7 are the analysis and results chapters. Chapter 6 discusses in more detail the

concept of QCD vacua and a search for parity violation of the strong interactions

at RHIC. Chapter 7 discusses a cumulative approach to measuring elliptic flow

and its implications on the hydrodynamics of a possible QGP formed at RHIC.
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CHAPTER 2

The Brookhaven Facility

The Brookhaven national laboratory was established in 1947 and is located in

central Long Island New York. Heavy-ion beams at Brookhaven are linearly

accelerated in five stages. From lowest to highest energy/nucleon the five stages

are: the cesium sputter ion source, the tandem Van de Graaff, the booster,

the AGS, and the relativistic heavy-ion collider (RHIC) which was completed in

2000. The five accelerators are linked in a chain such that the output of the

previous accelerator is injected into the next accelerator for further acceleration.

All components are shown schematically in figure 2.1. Also shown are the charge

Figure 2.1: RHIC acceleration scenario for Au beams.
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and kinetic energy states of Au ions at various locations. The charge state of the

Au ions are seen to become increasingly positive as one goes up the accelerator

chain. This is accomplished through the use of thin carbon stripping foils(≈
15µg/cm2) [Ste01] which strip incident ions of some of their electrons as they

pass through. The proton linac, also shown, is used for polarized proton beam

running at RHIC. However, this is not used for heavy-ion acceleration and will

not be discussed further.

2.1 Ion Extraction: The Start Of It All

Heavy-ions at Brookhaven originate at the cesium sputter source. The cesium

sputter source was designed and developed chiefly by R. Middleton around 1974

[Mid83]. It operates via the bombardment (sputtering) of cesium ions on a tar-

get. The “sputtering” of cesium ions against the target liberate negative ions

from the target. The freed target ions are then guided out of the chamber via an

electrostatic field (similar to an electron gun). A schematic of the core compo-

nents of the cesium sputter source is shown in figure 2.2. The cylindrical ionizer

Figure 2.2: Cesium sputter source.

is used to ionize the cesium vapor ions to a positive state before they sputter the
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target. In the diagram, the sputter target is held at a negative voltage while the

outer shell is held at ground potential. There is thus an electric field pointing

toward the sputter target which will kick the released negative target ions out of

the source (to the left). An actual target holder used at Brookhaven into which

solid Au may be packed is shown on the right in figure 2.3.

Figure 2.3: Empty target holder with a penny for scale.

2.2 Tandem Van de Graaff Accelerator

After exiting the source, the negative ions are next injected into a linear electro-

static accelerator: the tandem Van de Graaff Accelerator. The electro-static field

of a Van de Graff Accelerator is generated via the physical transport of charges

(+ or -) on a conveyor belt from one region to another. The transport creates a

region of depletion where charges were taken from and a region of surplus where

charges were deposited. This single-stage accelerator is the simplest type of Van

de Graff. A dual-stage or tandem Van de Graff is drawn in figure 2.4. One may

conceptually think of a dual-stage Van de Graff as two single-stage Van de Graff’s

put together in tandem with their two joining regions set at the same potential.

The joining region is given by the middle slice of figure 2.4 and at Brookhaven
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is set to +14MV. Both ends are set to ground potential. Negative ions from the

Figure 2.4: Dual-stage(tandem) Van de Graff accelerator.

source are input from the left and accelerated to the middle high voltage region.

Upon entering the middle region they pass through their first carbon stripping foil

(2µg/cm2) [Ste01]. This results in a distribution of charge states of which 15%

are in the desired +12e state. The resulting positive charges then receive further

acceleration as they enter the second stage of the tandem where the electric field

has switched sign. At the end of the tandem, the Au ions are at an energy of

1 MeV/nucleon or 197 MeV/nucleus. After the tandem, the ions pass through

another carbon stripping foil, putting them into a distribution of charge states of

which only the +32e state is transported to the Booster.

2.3 AGS Booster and AGS Accelerator

The next two types of accelerators used at Brookhaven are circular synchrotrons.

Unlike Van de Graff accelerators, synchrotrons possess electromagnetic fields

which change as a function of time (for any given point) such that the E field,
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B field, and ion location are all kept in synchronization. The sections of a syn-

chrotron which use a radio-frequency oscillating E field to impart energy into the

ion are called resonators. Due to the wave-like oscillation of the E field along the

length of the resonators at a given time, some sections will accelerate while other

sections decelerate. Care must be taken to keep the beam bunches only in the

accelerating regions. It is then clear that as the ions are accelerated to higher

speeds, the frequency of the E fields in the resonators must also increase to keep

the ions out of the decelerating regions. That is, the beam bunch locations must

be kept in synchronization with the E field frequency.

Ions are kept in circularly shaped synchrotrons with the B fields created

by dipole magnets. As the ions are boosted to higher and higher energies,

the B fields must increase such that the ion’s orbital radius remains constant,

R = p/(qB) = constant. The dipole magnets are a dominant limitation on syn-

chrotron performance. Typically what sets the ceiling for maximum attainable

energy at a synchrotron is the dipole magnet’s top field. They are also slower in

response time than the E fields of the resonators. In practice, this typically trans-

lates into the B fields being ramped up at a set rate and the E fields following

suit.

Formally, there are two types of synchrotrons: combined-function and separated-

function. Combined-function machines use the same B field for transverse-focusing

and orbit bending of the ion-beam. Both the “AGS booster” (simply called

booster) and the “AGS” are combined-function machines. Separated-function

machines are then ones which use different magnets for the two tasks just de-

scribed. Within the combined-function class there are two further classifications

for accelerators: weak-focusing and strong-focusing [Sch86]. Strong-focusing ac-

celerators are also called alternating-gradient accelerators. The booster and the
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AGS are both combined-machine alternating-gradient synchrotrons (AGS’s). The

AGS’s use two types of dipole magnets and are drawn in figure 2.5. The first

Figure 2.5: Two dipole magnets of opposite horizontal B-field components:(a) a

D magnet; (b) an F magnet.

type (a) is called a D magnet since it defocuses a beam in the horizontal direction

while it focuses in the vertical direction. The second type is an F magnet where

the opposite is true. The gradient of the B field, ∂B/∂r, is of one sign for 2.5a

and is of the opposite sign for 2.5b. The AGS’s achieve net focusing in both di-

rections as well as orbit bending with the alternating configuration DFDFDF....

with appropriately chosen spacing in between. Weak-focusing accelerators on the

other hand possess only one type of dipole B field gradient, D or F. Both the

AGS and Booster at Brookhaven are of the strong-focusing type.

The Booster and AGS have a circumference of 201.78m and 807.12m, respec-

tively [Bro01]. There are two more carbon stripping foils in the transfer lines

after the booster and after the AGS which strip the Au ion to +77 and +79,

respectively. Once in the +79 state, all electrons from the original Au ion have

been removed. The AGS started up in 1960 while the booster started up later

in 1991 to augment the capabilities of the AGS. Fixed-target heavy-ion collisions

were conducted with the AGS until the start of RHIC in 2000.
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2.4 RHIC Accelerator: The Last Boost

The relativistic heavy-ion collider (RHIC) was the first dedicated heavy-ion col-

lider in the world. It is the last accelerator in the chain and gives the final boost

of energy to Au ions after originating from the cesium sputter source. Unlike

the AGS and Booster, RHIC is a dual-beam-pipe separated-function machine

featuring superconducting magnets. Superconducting dipole magnets establish

the beam orbit curvature while superconducting quadrapoles are used for beam

focusing. Sextupoles are also used to correct for the slight defocusing nature of

the dipoles. The superconducting magnets are cooled to < 4.6 K with liquid

helium, allowing them to operate at higher fields [Hah03]. The RHIC ring is 3.8

km in circumference. Each beam-pipe possesses its own set of magnets. Beams

circulate in opposite directions in the two beam-pipes and are brought into colli-

sion at six locations. RHIC is thus a collider and not a fixed-target experiment.

Currently, there are two major experiments (STAR and PHENIX) occupying two

of those locations (6 & 8 o’clock). Figure 2.6 shows the geographical layout of

RHIC.

From figure 2.6 it is apparent that RHIC is not circular but instead made

up of six arc sections and six straight sections. It is therefore clear that beam

steering only takes place in the arc sections. Furthermore, ions gain energy–

linearly accelerated–in only one of the straight sections (labeled by “rf AREA”

at 4 o’clock in the figure). As with the booster and AGS, linear acceleration is

done with resonating cavities driven by radio-frequency voltages. This region also

shapes and maintains the bunch lengths. Table 2.1 lists important parameters

for RHIC.
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Figure 2.6: RHIC geographical layout.
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Table 2.1: RHIC parameters

Kinetic energy, injection-top(each beam),

Au 8.86-100 GeV/u

Protons 23.4-250 GeV

Luminosity, Au-Au @ 100GeV/u ∼ 2× 1026cm−2s−1

No. of bunches/ring 112

No. of Au-ions/bunch 1× 109

bunch length 1.52 m

Beam lifetime for Au @ γ > 30 ∼5 h

Circumference 3833.845 m

Beam separation in arc sections 90 cm

Number of crossing points 6

Magnetic rigidity, Bρ: @ injection 81.114 Tm

@ top energy 839.5 Tm

No. of dipoles(192/ring + 12 common) 396

No. of quadrupoles 492

Dipole field @ 100GeV/u, Au 3.458 T

Beam tube internal diameter 6.9 cm

Operating temperature via liquid He < 4.6 K

Beam stored energy ∼200 kJ
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CHAPTER 3

The Solenoidal Tracker at RHIC

The detector located at the 6 o’clock interaction region in figure 2.6 is the Solenoid

Tracker At RHIC (STAR). The STAR detector has full azimuthal acceptance

making it possible to study a wide variety of azimuthal particle correlations.

STAR’s goal is to study QCD under high temperature and energy density. In

particular, STAR focuses on signatures for QGP formation–a proposed 5th state

of matter. Data for the results in this dissertation were collected by the STAR

detector.

3.1 STAR Layout and Sub-Systems

The STAR detector is analogous to an onion where the whole is composed of

many layers (sub-detectors) centered axially on the beam line. The innermost

layer is the Silicon Vertex Tracker (SVT) + Silicon Strip Detector (SSD). The

SVT is a silicon drift detector whereas the SSD is a double-layered strip detector.

The SVT plus SSD combined extend 23 cm transversely from the beam line

[Arn03]. Beyond the SSD radius lies the Time Projection Chamber (TPC) used

for particle tracking and identification. Beyond the TPC outer radius of 200 cm

lies the Time Of Flight (TOF) detector used to extend particle identification out

to higher momenta than can be done with the TPC alone. Beyond the TOF

radius lies the Barrel Electro-Magnetic Calorimeter (BEMC) used to measure
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electromagnetic showers from photons and electrons. Beyond the BEMC lies

STAR’s magnet system used to impart a curvature on TPC tracks to establish

momentum measurements. Finally, beyond the magnetic system lies the Muon

Tracking Detector (MTD) used for muon identification. (All of these detectors

cover the entire 2π azimuth around the beam line–except the MTD.) Of these

detectors, only the STAR magnet and TPC are relevant for this dissertation.

They will be discussed further in the proceeding sections.

The main tracking detector at STAR is the TPC. Past its z-axis range of ±210

cm from center [And03] lies several detectors: the End-Cap Electro-Magnetic

Calorimeter (EEMC), the Forward TPC (FTPC), the Photon Multiplicity De-

tector (PMD), the Beam-Beam Counter (BBC), the Vertex Positioning Detector

(VPD), the Forward Pion Detector (FPD), and the Zero Degree Calorimeter

(ZDC). Of these detectors, only the ZDC is used for the analyses in this disser-

tation. It will be discussed further in section 3.2. The STAR detector with some

of these sub-detectors is shown in figure 3.1.

3.2 STAR ZDC

To help decide which heavy-ion collision events are interesting and which are not,

the STAR ZDC provides a minimally biased trigger (MinBias). The two ZDC’s

(ZDCwest, ZDCeast) are located in the forward direction on both sides of the

interaction region just beyond the Dx magnets, 18 m from the TPC center. They

are centered at θ = 0 and subtend an angle of no more than .115◦ in θ [Ack03].

The ZDC’s measure the energy and position of spectator neutrons liberated in a

heavy-ion collision.

Spectator neutrons receive only a very tiny transverse kick during the collision

23



Figure 3.1: STAR detector.

while their longitudinal motion (pz ∼ 100 GeV/c) is mostly unchanged. Thus,

to a high degree of approximation, their trajectories may be regarded as purely

longitudinal. Furthermore, since the neutrons are uncharged, they are transpar-

ent to the Dx magnets and so simply pass straight through instead of being bent

back into the arc sections of RHIC. Each ZDC is composed of three modules.

Each module consists of an alternating series of tungsten plates and wavelength

shifting fibers. The tungsten plates cause the neutrons to induce a shower of

particles which radiate Cherenkov light. The Cherenkov light is captured in the

proceeding layer of wavelength shifting fibers. This light is then routed to a PMT.

A minimum bias (MinBias) trigger is formed from the coincidence of ZDCwest

and ZDCeast signals. Each ZDC must have a summed signal greater than ∼ 40%

that of a single neutron’s energy [Bie03]. Comparison between ZDCwest and
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ZDCeast signal timings also give an estimate of the interaction location. Most of

the data presented in this dissertation uses this mimum bias trigger. Apart from

a trigger, the ZDC’s are also used to: monitor the beam for RHIC operation and

verify centrality in heavy-ion collisions.

3.3 STAR TPC

Particle tracking at STAR is done through the Time Projection Chamber (TPC).

It is a unique detector capable of digitizing 70 million voxels (three-dimensional

pixels) of data per event via many channels of front-end electronics [Ack03]. The

TPC is a barrel shaped detector centered on the beam-line. Its inner radius is

∼50 cm, its outer radius is ∼200 cm, and it measures ∼420 cm along z (beam-

line). It is depicted in figure 3.2. The TPC is actually divided into two regions by

a high-voltage central-membrane. While the central-membrane is kept at a high

negative voltage, the two end planes are kept at ground. This clearly establishes

an electric field pointing axially inward (opposite sign for both halves) with the

exception of edge-effects. However, a purely axial field is desired. To attain this,

the barrel outer shell is divided axially into 182 concentric field cage cylinders or

rings (not shown in figure) [And03]. The ring at the middle is half on the west

side (z > 0) and half on the east side (z < 0). This ring is at the same voltage

as the central-membrane. The next set of rings, on either side the central ring,

is set at a slightly lower voltage. This continues uniformly all the way to the end

planes where the rings eventually reach the ground potential of the end plane.

This is done with a chain of 183 2 MΩ resistors. The gradient of voltages across

the rings help reduce edge effects and produce a purely axial field in the central

volume of the TPC.

In addition to this electric field, an axial magnetic field is also applied to the
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Figure 3.2: STAR detector.

TPC volume. The magnetic field is used to impart an azimuthal bend in the

tracks. The radius of curvature at which a track bends is known to be directly

proportional to its transverse momentum. The magnetic field is therefore used

to identify a track’s transverse momentum. The magnetic field is established

through a set of concentric current-carrying rings outside the TPC. The rings

have a cross-section of 53.9 mm x 47.5 mm and are made of aluminum [Ber03].

They also have a small hole bored in their middle region for the passage of cooling

water. The maximum field attained in the TPC center is .5 T which corresponds

to roughly 4500 A of current in the rings. This, with the resistivity and length

of aluminum used, requires the passing water to transport ∼3.5 MW of thermal

power. Just as for the electric field, the magnetic field must also be purely axial.
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This is obtained with the help of trim coils and an outer steel yoke around the

entire barrel. The trim coils introduce another B field designed to counter off-axis

components near the ends of the main coils. The steel yoke serves to steer the

outer return field lines and thus keep the entire B field region more contained.

The inner volume of the TPC is filled with 90% argon and 10% methane

(P10 gas). A charged particle traversing a region purely filled with argon will

cause excitation and ionization of the argon atoms. Excited argon atoms will

then typically relax back down to a lower energy state via photon emission. If

left unchecked, the photons emitted in this process will strike metalic surfaces

in the TPC and release electrons through the photoelectric effect [Sau77]. This

is very undesirable since it is the freed electrons in the ionization process which

are recorded. A complex polyatomic molecule like methane is then inserted to

quench or absorb the photons from the excitation process.

Freed electrons from the ionization process will drift toward the end planes

where their signal is captured and recorded. With the applied electric field,

the electrons drift at a rate of 5.45 cm/µsec toward the end planes. The freed

positive ions will drift toward the central-membrane where they are absorbed but

not recorded.

The end planes are divided into 12 inner and outer sectors. Each sector is

composed of four planes. From smallest to highest |z| (z=0 represents TPC

center) they are: the gated grid, the shield grid, the anode grid, and the pad

plane. They are shown in figure 3.3.

The gated grid acts as a shutter for the drifting electrons. In an ’open’ con-

figuration, the gated grid is transparent to the passage of drift electrons. In this

configuration, all of the wires are biased to the same voltage which is typically

110 V. In a ’closed’ configuration the wire voltages alternate ±75 V from 110 V.
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Figure 3.3: STAR TPC.

In this configuration, a transverse electric field is generated across the wires in

the plane of the gated grid. Drift electrons will no longer pass straight through

the wire gaps but crash into the wires instead. The gating grid is opened when

an event is triggered on and closed otherwise.

Just beyond the gated grid lies the shield grid or ground grid. As its name

implies, the ground grid is set to ground potential. Its primary purpose is to sepa-

rate the drift region from the next region of the discussion–the MWPC avalanche

region–by terminating its field lines. The avalanche region contains anode wires

spaced 4 mm apart. The inner and outer sector anode wires are nominally set to

1170 V and 1390 V, respectively. The wires are aligned roughly in the azimuthal

direction.
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Once in close proximity to the anode wires, drift electrons undergo rapid

acceleration toward the anode wires and cause an avalanche of ionization. The

electrons from the avalanche are pulled toward the anode wires. Their exact

hit position along an anode wire determines one hit coordinate. The second

coordinate is determined from the pad in the pad plane which receives an induced

signal from the avalanche. The third coordinate is determined from the drift

time of the drift electrons and is where the acronym TPC gets its T. The three

coordinates give the location of a particular ionization event within the TPC

volume. As a charged particle ionizes not just in one spot but everywhere along

its trajectory, ionization will likewise be left along the entire trajectory. One is

thus left with an array of points in the TPC volume which can be put together

to reconstruct the particle’s trajectory, i.e. Px, Py, Pz. The azimuthal angle φ =

tan−1(Py/Px) is of great importance in the analyses of this dissertation. The

transverse momentum uncertainty (∆pt/pt) in the TPC is found to be on the

order of a few % [And03]. This is estimated to correspond to δφ < 2◦.

Another interesting feature which may be obtained from the drift electrons

is the energy loss per unit length (dE/dx) of the ionizing particle. Energy loss

of a charged particle in a TPC can occur elastically as well as inelastically but

is found to primarily occur through inelastic collisions with shell electrons of the

P10 gas [Leo94]. It may be mathematically modeled by the Bethe-Bloch formula

with a density effect correction δ and the shell correction C:

−dE
dx

= 2πNar
2
emec

2ρ
Z

A

z2

β2

[

ln

(

2meγ
2v2Wmax

I2

)

− 2β2 − δ − 2
C

Z

]

(3.1)

where: 2πNar
2
emec

2 = .1535 MeVcm2/g, re: classical electron radius = 2.817 ×
10−13cm, me: electron mass, Na: Avogadro’s number, I: mean excitation po-

tential, Z: atomic number of absorbing material, A: atomic weight of absorbing

material, ρ: density of absorbing material, z: charge of incident particle in units
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of e, β: v/c of incident particle, γ: 1/
√

1− β2, δ: density correction, C: shell

correction, Wmax: maximum energy transfer in a single collision.

From the formula it is clear that the energy loss of an incident particle de-

pends on its charge and velocity. Thus, for a given momentum, different particles

(protons, electrons, pions, kaons) will lose different amounts of energy. This fea-

ture is exploited at STAR as a means of particle identification. Figure 3.4 shows

a STAR dE/dx versus momentum measurement. One can clearly identify differ-

ent particle bands. For high momentum all of the particle bands merge into one

band. At this point one can no longer clearly identify particles based on their

dE/dx. Table 3.1 summarizes key parameters for the STAR TPC detector.

Figure 3.4: dE/dx versus momentum.
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Table 3.1: TPC parameters

Item Dimension Comment

Length of TPC 420 cm Two halves

Outer diameter 400 cm Of drift volume

Inner diameter 100 cm Of drift volume

Cathode 400 cm diameter Central membrane

Cathode potential -28 kV Central membrane

Drift gas P10 90% Ar, 10% CH4

Pressure Atmospheric +2 mbar Regulated

Drift velocity 5.45 cm/µsec Typical

Transverse diffusion(σ) 230 µm/
√
cm 140 V/cm and .5 T

Longitudinal diffusion(σ) 360 µm/
√
cm 140 V/cm

Number of anode sectors 24 12 per end

Dead space 3 mm Between sectors

Wire diameter 20, 75 µm Anodes, others

Anode wire to pads 2 mm, 4 mm inner, outer sector

Anode voltage 1170 V, 1390 V inner, outer sector

Number of pads 136,608

Sampling rate 9.4 MHz

Sampling depth 512 time buckets 380 time buckets typical

Magnetic field 0, ±.25 T, ±.5 T Solenoidal
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CHAPTER 4

Flow

In a heavy-ion collision, the plane formed by the impact parameter and the

beam-line (z-axis) is called the reaction plane. Of the numerous types of particle

correlations which may exist, the sub-group of correlations which depend on

the reaction plane orientation is called flow while the rest is called non-flow .

However, since the impact parameter is not experimentally observable neither is

the reaction plane. Instead, an approximation to the reaction plane, the event

plane, may be inferred from the particle distribution itself. This chapter gives an

introduction into flow analyses.

4.1 Fourier Decomposition of Particle Distributions

To mathematically characterize flow, a Fourier series of the particle distribution

may be used [PV98]:

E
d3N

d3p
=

1

2π

d2N

ptdptdy

(

1 +

∞
∑

n=1

(2an sin[n(φ−Ψr)] + 2vn cos[n(φ−Ψr)])

)

(4.1)

where E is the collision center of mass energy, N is the number of particles,

p is momentum, pt is transverse momentum, y is rapidity, and an and vn are

the Fourier coefficients of the azimuthal modulation to the particle distribution

in the transverse plane (⊥ beam-line). E is inserted to make the distribution

invariant to Lorentz transformations. The distribution is also called an invariant
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multiplicity distribution. The sine terms are sensitive to asymmetries across the

reaction-plane and are normally excluded from the sum above as their coefficients

are predicted to be much smaller than the cosine coefficients. They are included

here since the first harmonic sine term is of interest in chapter 6.

The factor of 2 in the sum of equation 4.1 is inserted to give the Fourier coeffi-

cients, an and vn, the simple interpretation, 〈sin[n(φ−Ψr)]〉 and 〈cos[n(φ −Ψr)]〉,
respectively. Experimentally, it is not 〈sin[n(φ −Ψr)]〉 and 〈cos[n(φ−Ψr)]〉 which
are measured, but rather 〈sin[n(φ−Ψm)]〉 and 〈cos[n(φ−Ψm)]〉, where Ψm is the

mth order event plane defined by the following equation.

Ψm =









tan−1

∑

i

wi sin(mφi)

∑

i

wi cos(mφi)









/m (4.2)

The sum goes over all particles i used for the event plane determination in an

event. wi is a weight which may be used to increase reaction plane resolution.

The weights are typically made as a function of the pt and η of the particle.

From equation 4.2 it is evident that the reaction plane can be estimated in m

different ways. Each is an independent estimation of the reaction plane which is

determined from the mth harmonic flow itself. In order to achieve the greatest

accuracy in a flow measurement one should generally choose the event plane

harmonic identical to the flow harmonic (m=n).

The reaction plane resolution for m=n case is given by

〈cos [n(Ψn −Ψr)]〉 (4.3)

This quantity may be determined through the correlation of calculated event

planes from two different sub-sets of particles (sub-events),
〈

cos[n(Ψa
n −Ψb

n)]
〉

[PV98], where Ψa
n and Ψb

n are two separate estimates of the reaction plane coming

from two distinct and equally large sub-events of particles. The reaction plane
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resolution in the TPC for
√
sNN = 200 GeV Au+Au MinBias collisions for n=2

is shown in figure 4.1 as a function of centrality.

Figure 4.1: TPC reaction-plane resolution (n=2) for 200 GeV Au+Au MinBias

collisions.

The physics pertaining to two Fourier coefficients are studied in this disserta-

tion: a1 and v2. They are introduced in the proceeding subsections.

4.1.1 〈sin (φ−Ψr)〉

The a1 Fourier coefficient is a measure of asymmetries across the reaction plane.

a1 is therefore P-odd as the operation of parity (~x→ ~−x) changes a1 → −a1 (this
is in general true for all an). Thus a1 may be used as a measure of parity violation

in heavy-ion collisions. a1 may also be different for positively and negatively

charged particles and so a+1 may be measured separately from a−1 . In particular

a+1 may be of a different sign than a−1 . This particular possibility is the subject
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of chapter 6 and has the simple interpretation of charge-separation with respect

to (w.r.t.) the reaction plane.

4.1.2 〈cos 2 (φ−Ψr)〉

The most commonly studied Fourier coefficient at STAR is v2: elliptic flow. It

is essentially a measure of the excess number of particles flowing either in the

reaction plane (positive v2) or out of the reaction plane (negative v2). Elliptic flow

is most commonly believed to develop from the initial spatial eccentricity of the

overlap region in non-central heavy-ion collisions. The spatial anisotropy causes

pressure gradients which transform this spatial anisotropy into the momentum

anisotropy which v2 measures. Elliptic flow has implications on the degree of

thermalization and deconfinement established in a collision. Chapter 7 presents

measurements of v2 for various particle types.

35



CHAPTER 5

Reconstruction of Weak Decays

Heavy-ion collisions produce many kinds of rare particles, some of which decay

into daughter particles before reaching the STAR TPC. The majority of particles

that reach the TPC are one of four types: pions, protons, electrons, and kaons.

Muons, deuterons and even alpha particles may also be seen directly in the TPC

but to a much smaller degree. A variety of those which decay before reaching

the TPC can be topologically reconstructed from their daughters. This is the

subject of this chapter. Only weak decays are considered here since they can be

more cleanly identified than strong (resonance) decays.

5.1 Topological Reconstruction of Weak Decays

The essence of topological reconstruction of particles is the extrapolation or

tracing-back of TPC tracks to points closer to the primary vertex (typically with

r < rinner, where rinner is the TPC inner radius). Daughter tracks of a parent

particle will be seen to merge at one common secondary vertex. The 4-vector

momentum of both daughters may be combined at this point to reconstruct the

4-vector momentum of the parent particle.

(Eparent,Pparent) = (Edaughter1,Pdaughter1) + (Edaughter2,Pdaughter2) (5.1)
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For particles undergoing a series of decays, one may do a series of reconstructions:

granddaughters with granddaughters, daughters with daughters, etc. An Ω− for

instance undergoes the following decay series: Ω− → Λ +K− → p+ + π− +K−.

The first reconstructed parent is the Λ. The second reconstructed parent is the

Ω−.

In experiment however, one must deal with detector limitations and track un-

certainties. Daughter tracks will generally not always merge but instead come to

some distance of closest approach (DCA), specifically a daughter-daughter DCA.

Figure 5.1 illustrates two TPC tracks and their extrapolation to regions closer

to a point called the primary vertex. The primary vertex is the point where a

significant number of tracks are seen to merge and is taken to be the collision

point. It is represented by the cross in figure 5.1. The dashed red track represents

daughter1 of a certain parent particle. The dashed black track then represents

daughter2 of the same parent. The curvature of these tracks is due to the TPC

magnetic field which is out of the page. The blue spider-web like lines represent

the TPC sector boundaries. The blue blocks at the bottom of the figure represent

the TPC pads. Also illustrated is the parent decay length (shown as a thick blue

line) and 3 different DCA’s: daughter-daughter DCA, daughter-primary DCA,

and parent-primary DCA. All together, these lengths provide a powerful set of

geometrical cuts which can significantly reduce combinatoric backgrounds in par-

ticle reconstruction. The following four subsections describe the reconstruction of

4 different particles. The data come from STAR’s 2007 run of 200 GeV Au+Au

collisions. The trigger setup is Minimum-Bias. The centrality spans the range

10-40% (mid-central). 18.5M events were used.
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Figure 5.1: TPC track topology. Taken from [Sor03]

5.1.1 K0
S Reconstruction

K0
S’s ( d̄s+ds̄√

2
) are reconstructed from its two charged pion decay channel, K0

S →
π+ + π−, with a branching ratio of 69.2%. Table 5.1 lists key parameters and
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geometrical cuts used for K0
S reconstruction. A figure of the invariant mass dis-

Table 5.1: K0
S parameters

mass 497.6 MeV

mean decay length (cτ) 2.68 cm

K0
S-primary vertex DCA cut < 1 cm

pion dE/dx cut |σ| < 3

pion pt cut > .15 GeV/c

pion-primary vertex DCA cut > 1.3 cm

K0
S decay length cut > 2 cm

pion-pion DCA cut < .5 cm

tribution for the reconstruction of K0
S with the parameters listed in table 5.1 is

shown in figure 5.2. The K0
S peak is fit with a Breit-Wigner function. A Gaussian

Figure 5.2: K0
S invariant mass distribution.

fit was also attempted but resulted in a worse fit. The combinatoric background
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underneath the peak is fit with a polynomial.

5.1.2 Λ Reconstruction

Λ’s (uds) are reconstructed through the decay channel Λ → π− + p+, with a

branching ratio of 63.9%. Table 5.2 lists key parameters and geometrical cuts

used for Λ reconstruction. A plot of the invariant mass distribution for the

Table 5.2: Lambda parameters

mass 1115.7 MeV

mean decay length (cτ) 7.89 cm

Λ-primary vertex DCA cut < 3 cm

pion, proton dE/dx cut |σ| < 3

pion, proton pt cut > .15 GeV/c

pion-primary vertex DCA cut > 2.5 cm

proton-primary vertex DCA cut > 1.5 cm

Λ decay length cut > 5 cm

pion-proton DCA cut < .5 cm

reconstruction of Λ and Λ̄ is shown in figure 5.3. The Λ peak is fit with a Breit-

Wigner function. A Gaussian fit was also attempted but resulted in a worse fit.

The combinatoric background underneath the peak is fit with a polynomial.

5.1.3 Ξ Reconstruction

Ξ’s (ssd) are reconstructed through the decay channel Ξ → Λ+ π− → 2π− + p+,

with a branching ratio of 99.887%×63.9%=63.82%. Table 5.3 lists key parameters

and geometrical cuts used for Ξ. The Λ daughters are reconstructed according to

table 5.2. A plot of the invariant mass distribution for the reconstruction of Ξ−
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Figure 5.3: Λ+Λ̄ invariant mass distribution.

Table 5.3: Cascade parameters

mass 1321.71 MeV

mean decay length (cτ) 4.91 cm

Ξ-primary vertex DCA cut < 1 cm

cos(φΞ − φΛ) > .9

pion dE/dx cut |σ| < 3

pion pt cut > .15 GeV/c

pion-primary vertex DCA cut > 1 cm

Lambda-primary vertex DCA cut > .1 cm

Λ mass 1.105<mass<1.125

Λ-pion DCA cut < .64 cm

and Ξ+ is shown in figure 5.4. The Ξ peak is fit with a Gaussian function. The

combinatoric background underneath the peak is fit with a polynomial.
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Figure 5.4: Ξ−+Ξ+ invariant mass distribution.

5.1.4 Ω Reconstruction

Ω’s (sss) are reconstructed through the decay channel Ω → Λ + K− → K− +

π− + p+, with a branching ratio of 67.8%×63.9%=43.33%. Table 5.4 lists key

parameters and geometrical cuts used for Ω. The Λ daughters are reconstructed

according to table 5.2. A plot of the invariant mass distribution for the recon-

struction of Ω− and Ω+ is shown in figure 5.5. The Ω peak is fit with a Gaussian

function. The combinatoric background underneath the peak is fit with a poly-

nomial.
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Table 5.4: Omega parameters

mass 1672.45 MeV

mean decay length (cτ) 2.46 cm

Ω-primary vertex DCA cut < 1 cm

cos(φΩ − φΛ) > .9

kaon dE/dx cut |σ| < 3

kaon pt cut > .15 GeV/c

kaon-primary vertex DCA cut > .1 cm

Lambda-primary vertex DCA cut > .1 cm

Λ mass 1.105<mass<1.125

Λ-kaon DCA cut < .64 cm

Figure 5.5: Ω−+Ω+ invariant mass distribution.
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CHAPTER 6

Parity Violation in the Strong Interactions

Chapter 1 gave a brief introduction to the idea of vacuum transitions in QCD.

This chapter extends the concept of vacuum transitions and shows how they can

lead to parity violation in the strong interactions–something which has never

before been observed in experiment.

6.1 Theoretical Introduction

Relativistic heavy-ion collisions provide a unique opportunity to realize the effects

of vacuum transitions due to their enormous energy densities. Before the idea of

a vacuum transition is discussed further, the idea of the QCD vacuum itself must

be discussed. As mentioned in the first chapter, the QCD vacuum is not to be

thought of as the void of everything, but rather a state of constantly fluctuating

quark and gluon fields. At a given instant of time (e.g. the instant of a heavy-

ion collision), the gluon fields will exhibit a certain configuration which need not

be the same at the next instant of time. The structure of the QCD vacuum is

governed by the mathematics of Topology. Mathematically, the spatial part of the

QCD vacuum configuration at time t may be represented by the Chern-Simons

number, NCS(t) [Dia03].

NCS(t) =
g2

16π2

∫

d3xǫijk
(

Aa
i ∂jA

a
k +

1

3
ǫabcAa

iA
b
jA

c
k

)

(6.1)
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Here Aa
i , represents the gluon gauge fields of the vacuum and are functions of time

and space. Indices (i,j,k) and (a,b,c) represent the spatial and color component,

respectively. The more historical Pontryagin index or topological charge, ν, is

the difference of Chern-Simons number at temporal infinity and negative infinity.

ν = NCS (+∞)−NCS (−∞) (6.2)

That is, ν takes into account the full evolution of NCS over time. It will be useful

later on to re-express ν in terms of the gluon field strength tensor (F a
µν) and its

dual (F̃ a
µν). See appendix A for a description of the field strength tensors.

ν =
g2

32π2

∫

d4xF a
µνF̃

a
µν (6.3)

The gauge fields are assumed to die off sufficiently fast with space and time such

that the integral is effectively only taken over the space-time collision region (see

gauge field solution in Appendix A).

Now we come to the subject of vacuum transitions, dNCS(t)
dt

6= 0. The QCD La-

grangian is invariant under distinct SU(3) gauge transformations for each space-

time point. Fluctuations of the QCD vacuum can be understood as spontaneous

gauge field transformations. A general gauge transformation g(x) (not the cou-

pling constant g) in SU(3) is a function of space-time and is given by [Col85]:

g (x) = eiλ
a(x)Ta

(6.4)

where λa(x) is the free parameter of the transformation and T a is an SU(3)

generator (3x3 matrices). The gauge fields themselves transform as

Aa
µ(x) → g(x)Aa

µ(x)g
−1(x) + g(x)∂µg

−1(x) (6.5)

Given this transformation of the gauge fields it is not very apparent how our

parameter describing the vacuum, NCS, changes. We may nonetheless give a
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very qualitative distinction between two types of transformations. The most

probable transformations are small ones which incur only a very small change

in NCS. The less probable transformations, which are the ones of interest here,

change the gauge fields by a large amount and can change NCS and ν by an

integer value. These are to be understood as vacuum transitions, i.e. a transition

from one local minimum of energy to another local minimum. We will henceforth

only refer to ν in talk of transitions but it is understood that NCS changes by

the same values as well.

An actual solution of the gauge fields to a transition of 1 unit was shown

by ’t Hooft and is given in appendix A. The solutions are localized in space

and time. Thus, this is a “local” phenomenon, i.e. each space-time point can

undergo an independent transition. The many vacua (minima) of QCD are shown

schematically in figure 6.1. A transition which occurs by tunneling through the

Figure 6.1: Potential energy of the gluon field. Figure adapted from [Dia03].

potential energy barrier is called an instanton. A transition which “goes over the

top” is called a sphaleron. At very large energy densities such as those achieved

at RHIC, ’t Hooft predicts that instanton rates are heavily suppressed [Hoo76].

However, sphaleron rates are not suppressed and are predicted to dramatically
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increase the total vacuum transition rate at RHIC [KMW08].

Although there are many vacua in QCD, there is still one which is unique. The

unique vacuum is called the true vacuum and represents the gluon configuration

with the lowest energy density globally . For this state, ν = 0 [WV84]. Instan-

tons and sphalerons, which change ν to non-zero values by an integer, represent

transitions to or from “false” vacua.

6.1.1 Axial Anomaly

The axial vector current in QCD represents the flow of net handedness (left-

handed - right-handed particles).

j5µ = ψ̄γµγ
5ψ (6.6)

Its divergence or non-conservation is given by the axial or Adler-Bell-Jackiw

anomaly. In the chiral limit, i.e. mquarks = 0, the axial anomaly reads:

∂µj5µ = −Nfg
2

16π2
F a
µνF̃

a
µν (6.7)

The axial anomaly is apparently related to the topological charge of equation 6.3

and therefore provides us with a profound interpretation of transitions to non-

zero ν. Apparently, fluctuations of ν causes fluctuations in the net number of

left/right handed quarks. The net number of left/right handed quarks (NL/NR)

as a function of time is given by

NL(t)−NR(t) = −
∫ t

−∞
dt

∫

d3x
Nfg

2

16π2
F a
µνF̃

a
µν (6.8)

This expression can be rewritten in terms of the topological charge: Inserting

equation 6.3 into 6.8 we obtain

NL(t)−NR(t) = 2Nf(νt − νt0) = 2Nfνt (6.9)
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where Nf is the number of fermion flavors and νt0 is absorbed into νt (shifted).

This equation shows that as the vacuum fluctuates to metastable states the net

handedness of the system will also fluctuate. It also says that for a given state,

say, positive ν, there is a preference in nature of left handed quarks over right

handed quarks and vice versa for negative ν. This is parity violation of the

strong interactions!

It should be stressed that this is not a “global” phenomenon, but rather a

“local” one, i.e. the vacuum transitions are localized in space and time. Each

space-time point may undergo independent and opposite transitions (∆ν = +1

or ∆ν = −1). Integration of this effect over very large space-time volumes will

average to zero. We call this type of parity violation a local parity violation.

This formalism is not strictly for QCD, but also carries over into Electro-Weak

theory. An axial anomaly exists there too, but this time the quantity which is

not conserved is baryon plus lepton (B + L) number. With this axial anomaly

it is possible for anti-baryons to convert into leptons. The violation of baryon

plus lepton number conservation could possibly explain the dominance of matter

over anti-matter in the universe. In fact, the original idea to study symmetry

breaking through the axial anomalies was due to ’t Hooft [Hoo76].

6.1.2 The Chiral Magnetic Effect

At STAR we cannot directly observe the chirality (left or right-handedness) of

particles. In order to indirectly observe this, a mechanism is needed to convert the

chirality asymmetry into another type of asymmetry. The Chiral Magnetic Effect,

proposed by Dmitri Kharzeev et al. [KMW08], is one such mechanism. The

Chiral Magnetic Effect is generated by the interplay of the chirality asymmetry

and the background magnetic field created in non-central heavy-ion collisions.
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The existence of the background magnetic field is illustrated in figure 6.2. The

Figure 6.2: A non-central heavy-ion collision showing the magnetic field

green grid represents the reaction plane. The oval orange/red zone represents the

collision participants while the blue partial spheres represent the spectators. The

spectators are highly charged and are moving at speeds close to that of light.

For a mid-central collision with the impact parameter b ∼ .8 times the radius

of the Gold nucleus, each blue partial sphere will contain on average half of

the Gold nucleus’ charge, +39.5e. They clearly constitute an ordinary electro-

magnetic current. This would of course produce a magnetic field at the center of

the collision region which is perpendicular to the current. As one travels away

from the center transverse components to the field will appear. All transverse

components are ignored in this analysis. The B field in the entire interaction

region is taken to be that at the center of the collision and is given by the black

arrow. The magnetic field of both spectator nuclei interfere constructively. The

participant region also contributes to the magnetic field as it is charged and

contains orbital angular momentum as well.
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A calculation of the magnetic field versus the proper time after the instant of

collision, τ , is shown in figure 6.3 [KMW08]. The center of mass energy is 200

GeV per nucleon pair; the highest heavy-ion energy at RHIC. Calculations for

three different impact parameters are shown. The units used are ’natural units’

Figure 6.3: Background magnetic field for
√
sNN = 200 GeV collisions at three

different impact parameters. Figure taken from [KMW08].

where c = h̄ = q = 1. To convert the y-axis to more familiar units of Tesla we

must express a Tesla in terms of its fundamental units (kg,m,sec,C), factor out

two powers of Joules, and group the remaining units into qh̄c2 which is not equal

to 1 in SI units. We find:

(MeV )2 =
1

f 2qh̄c2
(Tesla) ≈ 1.7× 1010Tesla (6.10)

where f is number of MeV in a Joule, q is the electron charge, h̄ is Plank’s

constant over 2π, and c is the speed of light. Therefore, at τ = .25 the magnetic

field reaches ∼ 17 trillion Tesla! Clearly the magnetic fields created in non-central
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heavy-ion collisions are enormous but decrease very rapidly with time. To put

this in perspective, the largest macroscopic magnetic field created by man in

condensed matter experiments only reaches ∼ 16 Tesla.

We now consider how this magnetic field will interact with the quark-gluon

plasma created in the collision. Since gluons are not electrically charged they

will not interact with the magnetic field B. Of course quarks are charged and are

also quantum mechanical objects. Their energy levels in a magnetic field will be

governed by the Landau levels plus the spin B field coupling [LL77].

E = (n+
1

2
)h̄ωH + p2x/2m− qh̄

mc
~σ · ~B (6.11)

B is the magnetic field. q and m are the quark charge and mass, respectively.

The first term represents the Landau levels (ωH = |q|B/mc is the harmonic

oscillator frequency). The second term is the energy from the x-component of

momentum which can take on any value. The third term is the spin B field

coupling (~σ · ~B = +B/2,−B/2). The first and third term depend linearly on the

B field. Thus for very large magnetic fields all particles will be found in the lowest

Landau level, n=0. This corresponds to motion either parallel or anti-parallel to

the field (wave function given in Appendix B). Furthermore, positive quarks will

have their spin parallel with the field while negative quarks will have their spin

anti-parallel to the field. The same thing can be said about electrons (nucleons)

in a magnetic field where the sign of the Bohr magneton (nuclear magneton)

depends on the sign of the particle’s charge.

For the following discussion we work in the chiral limit where quarks are

massless and helicity = chirality. If the B field points in the positive x-direction:

positive left-handed fermions and negative right-handed fermions will travel in

the positive x-direction. At the same time negative left-handed fermions and

positive right-handed fermions will travel in the negative x-direction. Now we
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invoke the helicity change of the system which comes from the axial anomaly.

After a vacuum transition has occurred we have more right handed than left-

handed fermions (for the case νt = −1). The helicity change of a particle will

occur through the momentum reversal channel rather than the spin-flip channel

as spin-flip is energetically suppressed with such large magnetic fields. This idea is

illustrated in figure 6.4. As we can see from figure 6.4, the Chiral Magnetic Effect

Figure 6.4: The Chiral Magnetic Effect. u and d stand for up and down quarks. L

and R denote the handedness. Blue arrows (arrow on right side of quark) denote

the spin direction. Red arrows (arrow on left side of quark) denote the momentum

direction. In 1 we have the situation before a P-odd vacuum transition. In 2 we

have the onset of a vacuum transition with Qw = νt = −1. In 3 we have the final

configuration showing a helicity preference and charge separation. Figure taken

from [KMW08].

shows that there will be charge separation relative to the plane perpendicular to

the B field. This plane is the reaction-plane, so this is also charge separation

relative to the reaction-plane. That is, a surplus of positive charges on one

side of the reaction-plane and a surplus of negative charges on the other side (a
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dipole moment). If we have instead a vacuum transition with νt = +1, then the

situation is just reversed. Positive and negative transitions are equally probable.

Thus, the dipole moment may fluctuate from event to event.

It has been shown that the interplay of the magnetic field with the chirality

asymmetry could be transformed into a charge asymmetry with respect to the

reaction-plane. This we call out-of-plane charge separation. It is predicted that

this effect will be too small to observe in a single collision event. Moreover, the

dipole moment of this effect fluctuates from event to event. Because of this we

must use multi-particle correlation techniques to study this effect in experiment.

6.2 Looking for The Chiral Magnetic Effect at STAR

The correlation functions proposed by Sergei Voloshin to measure out-of-plane

charge separation with respect to the reaction-plane are [Vol04]:

〈

cos(φ±
a + φ±

b − 2φc)
〉

(6.12)

〈

cos(φ∓
a + φ±

b − 2φc)
〉

(6.13)

φ is the azimuthal angle of TPC tracks a, b, and c. The charge of particle a

is equal to the charge of particle b in equation 6.12. We call these same-sign

correlations. The charge of particle a is opposite to the charge of particle b in

equation 6.13. We call these opposite-sign correlations. In both equations particle

c includes both types of charge. In this dissertation a variation of these functions

is used which is qualitatively equivalent.

〈

cos(φ±
a + φ±

b − 2Ψ2)
〉

(6.14)

〈

cos(φ∓
a + φ±

b − 2Ψ2)
〉

(6.15)
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Ψ2 is the 2
nd order event-plane determined through equation 4.2. It is determined

from the same pool of particles which φc drew from. To further understand this

correlation function we decompose the correlation into two other correlations

using a trigonometric identity (opposite-sign taken for simplicity).

〈

cos(φ∓
a + φ±

b − 2Ψ2)
〉

=
〈

cos(φ∓
a −Ψ2) cos(φ

±
b −Ψ2)

〉

−
〈

sin(φ∓
a −Ψ2) sin(φ

±
b −Ψ2)

〉

(6.16)

If particles a and b are only correlated through the event-plane the average of

the product equals the product of the averages. We may then relate the averages

obtained to the Fourier coefficients of equation 4.1 and obtain

〈

cos(φ∓
a −Ψ2) cos(φ

±
b −Ψ2)

〉

= v∓1 v
±
1 +NF +Bcc (6.17)

〈

sin(φ∓
a −Ψ2) sin(φ

±
b −Ψ2)

〉

= a∓1 a
±
1 +NF +Bss (6.18)

, where v±1 is the directed flow of positive or negative particles. a±1 are the co-

efficients which are directly sensitive to the Chiral Magnetic Effect. With pure

charge separation we expect a∓1 a
±
1 < 0. NF is the pure non-flow contribution,

which by definition is the same for both 〈cos(φa −Ψ2)〉 and 〈sin(φa −Ψ2)〉. Bcc

and Bss are possible background contributions for the cos()cos() and sin()sin()

parts, respectively. They represent instances where the correlation is a convo-

lution of flow and non-flow, e.g. a flowing cluster. They may in principle be

different, however the correlations of equations 6.14 and 6.15 measured in popu-

lar heavy-ion collision models like HIJING, MEVSIM, and URQMD do not show

a “P-odd” signal [Abe09]. For the time being we will assume that there are no

other backgrounds which will cause a “P-odd” signal, i.e. Bcc = Bss. In this

light we may regard the 〈cos() cos()〉 part of equation 6.16 as the “baseline” for

the part which is directly sensitive to the Chiral Magnetic Effect, 〈sin() sin()〉.
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Rewriting equations 6.14 and 6.15 with Bcc = Bss gives

〈

cos(φ±
a + φ±

b − 2Ψ2)
〉

= v±1 v
±
1 − a±1 a

±
1 (6.19)

〈

cos(φ∓
a + φ±

b − 2Ψ2)
〉

= v∓1 v
±
1 − a∓1 a

±
1 (6.20)

6.3 Acceptance Corrections

Poor detector acceptance may introduce artificial “correlations” into equations

6.14 and 6.15. Non-uniform acceptance may be characterized by

cn = 〈cos(nφ)〉 6= 0 (6.21)

sn = 〈sin(nφ)〉 6= 0 (6.22)

The averages go over all particles in an event and all events (all reaction-plane

orientations). It has been shown that acceptance corrections can be one of three

types [SV08]. Only the dominate of the three corrections, recentering, is used

in this chapter. To illustrate the process of recentering we first decompose the

three point correlation function into single point functions using trigonometric

identities.

〈cos(φa + φb − 2Ψ2)〉

= 〈[cos(φa) cos(φb)− sin(φa) sin(φb)] cos(−2Ψ2)〉

− 〈[sin(φa) cos(φb) + sin(φb) cos(φa)] sin(−2Ψ2)〉 (6.23)
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To apply the recentering acceptance correction to this quantity we simply make

the following replacements

cos(φ) → cos(φ)− 〈cos(φ)〉

sin(φ) → sin(φ)− 〈sin(φ)〉

cos(2Ψ2) → cos(2Ψ2)− 〈cos(2Ψ2)〉

sin(2Ψ2) → sin(2Ψ2)− 〈sin(2Ψ2)〉 (6.24)

Here the averages are done over all particles in all events. With this correction a

particle’s measured φ angle is effectively shifted by a certain amount depending

on a detector’s acceptance. The re-centering approach to acceptance corrections

is used in all of the results of this chapter. Separate shifts are measured for each

centrality class and RHIC run-number to improve the performance of this tech-

nique. A demonstration of how recentering affects the event-plane distribution is

shown in figure 6.5. The distribution for a large number of events has to be flat

since all possible reaction-plane orientations will be sampled.
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Figure 6.5: Flattening of the event-plane distribution with recentering (0-80%

centrality). Red shows the distribution before acceptance corrections. Blue shows

the distribution after corrections.

6.3.1 Expectations

Through the axial anomaly of QCD we could have a sphaleron vacuum transition

in RHIC heavy-ion collisions. In the region of the sphaleron, the number of left-

handed quarks minus right-handed quarks is not conserved. Figure 6.4 shows that

this may effectively be regarded as back-to-back quark anti-quark emission

from the sphaleron.

In terms of the detected hadrons in an event, we must have at least two like-

charge hadrons which underwent the Chiral Magnetic Effect in order to have a

non-zero same-sign correlation. If only one hadron underwent the effect the signal

will be null since the other sine in equation 6.16 is uncorrelated. Two same-charge

hadrons may in turn correspond to one or more back-to-back quark anti-quark
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pairs emitted from the sphaleron(s). Hadron formation mechanisms (e.g. quark

fragmentation or coalescence) need to be specified in order to determine this.

For the opposite-sign correlations, we must have at least one pair of oppositely

charged hadrons which underwent the Chiral Magnetic Effect in order to have a

non-zero opposite-sign correlation. Again, hadron formation mechanisms need to

be specified to assess how this corresponds to the number of oppositely charged

quarks produced from the sphaleron.

For events with out-of-plane charge separation the following will be true on

average: a+1 = −a−1 . Therefore we expect a±1 a
±
1 > 0 and a∓1 a

±
1 < 0. If v±1 v

±
1 ≈

v∓1 v
±
1 = v21 makes a negligible contribution, then we expect

〈

cos(φ±
a + φ±

b − 2Ψ2)
〉

<

0 (same-sign correlations). Likewise, we expect
〈

cos(φ∓
a + φ±

b − 2Ψ2)
〉

> 0 (opposite-

sign correlations).

6.4 Results

6.4.1 Charged Hadrons

The same-sign and opposite sign correlations versus collision centrality for all

charged hadrons detected in the TPC are shown in figure 6.6. Dataset and track

parameters are displayed in table 6.1.

Several features of this plot need to be pointed out. The correlation magni-

tudes are very small, ∼ 10−4, but the statistical errors are even smaller (smaller

than data-point size). We may now assess whether the v21 term of equations

6.19 and 6.20 is negligible. A previous STAR publication [Abe08b] shows that

v21 ∼ 10−6 for particles in the TPC. This is 2 orders of magnitude smaller than

the observed signal and is therefore negligible.

We see that the same-sign correlations are always negative. The opposite-sign
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Table 6.1: Track cuts

Dataset 200 GeV Au+Au (MinBias 2007)

# Events 42 M

Track pt > .15 GeV/c and < 2 GeV/c

Track |η| < 1

Primary-vertex dca < 3 cm

Track nHits > 15

nHits/nHitsMax > .52

Figure 6.6: Correlation functions versus centrality. Statistical errors only.

correlations are slightly negative in central and mid-central collisions and turn

positive in peripheral collisions. This feature is generally in qualitative agree-

ment with our expectations of dynamical out-of-plane charge separation. The

absolute magnitudes of either correlation increases as one goes to more periph-

eral collisions. The explanation for this could be a superposition of two separate

59



explanations. The first is that the background magnetic field produced by the

spectators will be larger for more peripheral collisions which will allow for a more

pronounced P-odd effect. The second is that the number of particles coming from

other P-even physics processes will decrease, providing for less dilution as we go

to more peripheral collisions.

Another feature of figure 6.6 is that the opposite-sign correlations are sup-

pressed relative to the same-sign correlations in all but the most peripheral bin.

This may be due to in-medium scattering. As the Chiral Magnetic Effect is a

“local” phenomenon, the sphaleron could be spatially located anywhere within

the nucleus-nucleus collision region. It is therefore statistically very likely that

either the quark or anti-quark in a back-to-back emission will have to traverse a

larger path length through the medium than the other. The number of scattering

events which a particle experiences depends upon its mean free path and path

length. Therefore, the particle that traverses the larger path length will scatter

more and break more of the original back-to-back correlation. This would lead

to a suppression of opposite-sign correlations.

Also, by virtue of the track cut: primary-vertex dca < 3 cm we can be assured

that the majority the correlations present will be due to the strong interactions.

Tracks with very large primary-vertex dca are typically products of weak-decays

and are cut out of this analysis.

Figure 6.7 now shows the correlation average split up into its 〈cos() cos()〉 and
〈sin() sin()〉 parts. We see that in all cases the sine parts are smaller in magnitude

than the cosine parts. This is still consistent with the idea of dynamical out-of-

plane charge separation if–as we already assumed–Bcc = Bss in equations 6.17

and 6.18. That is, the background contamination for both sine and cosine parts

is given by the cosine part alone. We observe the sine parts to deviate from the
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Figure 6.7: 〈cos(φa −Ψ2) cos(φb −Ψ2)〉 and 〈sin(φa −Ψ2) sin(φb −Ψ2)〉 shown

separately. Statistical errors only.

cosine parts in a manner which is expected by dynamical out-of-plane charge

separation.

Figure 6.6 is a higher statistics version of the flagship result of a very recently

published PRL [Abe09]. There, the correlation was also measured in Cu+Cu

collisions and yielded a similar signal. Presented in this publication is also the

result of the correlation functions measured in several heavy-ion physics models:

HIJING, MEVSIM, and URQMD. These models do not contain the parity vio-

lation effect we are looking for and thus serve as a reasonable background check.

Figure 6.8 is taken directly from this publication. The x-axis of figure 6.8 is back-

wards relative to figure 6.6. The colored wavy bands represent an estimate of the

systematic errors. The thick lines represent the reaction-plane independent back-

ground from HIJING (〈cos(φa − φb)〉). What is apparent from figure 6.8 is that
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Figure 6.8: Heavy-ion model comparisons with real data. Plot taken from

[Abe09].

no model simultaneously reproduces both the qualitative and quantitative results

of both opposite-sign and same-sign correlations from the real data. Moreover,

only one model (HIJING+v2) can even generate the correlations for same-sign

and opposite-sign charges with a sign consistent with data despite very different

magnitudes. All in all, this was taken as evidence for the discovery of local parity

violation in strong interactions.

The correlations are now shown with respect to the longitudinal variable:

θ = 2 tan−1(e−η). η is the pseudorapidity of a particle. The θ’s of the two

particles are combined in two ways (∆θ and 〈θ〉) and the correlation plotted

against each.

Figure 6.9 shows the correlations as a function of |θa − θb|. The opposite-sign
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Figure 6.9: Correlations versus |θa − θb|. 50-80% centrality. Statistical errors

only.

correlations are peaked at low relative θ. From our expectations of back-to-back

quark anti-quark emission this would seem to suggest that the emission axis

would be preferentially aligned perpendicular to the beam-line (η = 0). For the

same-sign correlations we see a rather broad trend. From our expectations, this

would seem to suggest that like-charge particles from a particular sphaleron decay

are emitted with a rather broad range in relative θ.

The correlations versus (θa + θb)/2 (average θ) are shown in figure 6.10. Any

asymmetries across θ = 90◦ seen here must be caused by detector inefficiencies.

The role of same-sign correlations against average θ in evaluating our expecta-

tions is that of opposite-sign correlations against ∆θ. That is, both types assess

the emission axis distribution (neglecting multiple scattering in the medium).

However, the same-sign results of figure 6.10 are inconsistent with the opposite-

sign results of figure 6.9. Inclusion of multiple scattering in the medium may

explain why the same-sign results of figure 6.10 are flat but the same reasoning–if

not more so–should apply to the opposite-sign results of figure 6.9.
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Figure 6.10: Correlations versus 〈θ〉. 50-80% centrality. Statistical errors only.

For the opposite-sign correlations in figure 6.10 we expect 〈θ〉 ≈ 0 since they

are back-to-back (before scattering). Thus, we should expect the distribution

to be sharply peaked at 〈θ〉 = 0. Scattering would again tend to flatten the

distribution. However, what we see is distinctly not peaked at zero nor flat!

6.4.2 Ξ± Results

Topologically reconstructed Ξ’s present an interesting possibility of displaying

the Chiral Magnetic Effect. The valence quarks of Ξ are all of like charge (ssd).

In principle it is possible for all three of its quarks to participate in the Chiral

Magnetic Effect and later coalesce to form a Ξ. If this is the case, Ξ+’s would flow

to the opposite side of the reaction-plane than Ξ−’s (charge separation again).

This effect can be measured with equations 6.14 and 6.15 by replacing particle

a and particle b with Ξ’s. However, the number of Ξ’s per event is far too low

(<< 1 per event) to correlate Ξ+’s with other Ξ−’s. Instead we correlate Ξ’s with

the rest of the charged hadrons in the event. That is, we only replace particle a
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and measure 〈cos(φΞ + φb − 2Ψ2)〉 for both charge combinations as before.

The results are shown in figure 6.11 with a total sample size of ∼ 1.2M Ξ’s.

Reconstruction of Ξ’s are done with the cuts outlined in chapter 5. Overall, these

Figure 6.11: Ξ correlations versus centrality. Statistical errors only.

results are consistent with zero. Only at 25% centrality do both correlations differ

from zero non-statistically. At no other centrality bin is this behavior repeated.

In order to make a more statistically significant statement here, it is estimated

that a factor of four more Ξ’s are needed.

6.5 Modulated Sign Correlations of 〈cos(φa + φb − 2Ψ2)〉

The correlation function 〈cos(φa + φb − 2Ψ2)〉 is a correlation of two particles

with respect to the event-plane. This section seeks to understand how much

of the signal in figure 6.6 is by virtue of the two particles being on the same

or opposite side of the event-plane independent of the precise angle they are

apart from each other and the event-plane. We call this piece of the correlation

function sign correlations. Again, the main prediction of the Chiral Magnetic
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Effect is out-of-plane charge separation, which sign correlations are still sensitive

to.

To see the sign correlations mathematically we rewrite the right hand side of

equation 6.16 (dropping the charge superscripts).

〈cos(φa −Ψ2) cos(φb −Ψ2)〉 − 〈sin(φa −Ψ2) sin(φb −Ψ2)〉

= 〈SaSbMaMb〉in−plane − 〈SaSbMaMb〉out−plane (6.25)

Here “in-plane” refers to the 〈cos() cos()〉 part of the correlation since it is most

sensitive to particles near the event-plane. “Out-plane” refers to the 〈sin() sin()〉
part of the correlation since it is most sensitive to particles near the perpendicular

to the event-plane. S is the sign (±) of an individual cosine(sine) for the in-

plane(out-plane) part. M is the absolute magnitude of an individual cosine(sine)

for the in-plane(out-plane) part. Sign correlations result when we make two

reductions to equation 6.25: 〈SM〉 = 〈S〉 〈M〉 and 〈MaMb〉 = 〈Ma〉 〈Mb〉. That

is, we ignore the cases when the magnitudes are correlated to the signs and when

the magnitudes are correlated with each other. The correlation is now given by

[

〈SaSb〉 〈M〉2
]

in−plane
−
[

〈SaSb〉 〈M〉2
]

out−plane
(6.26)

This equation represents the sign correlations (〈SaSb〉) modulated by the average

magnitude squared (〈M〉2). They are modulated to allow for direct compari-

son with figure 6.6 later on. The sign correlations are now rewritten in terms

of the NT,B
± and NL,R

± : the observed number of positive/negative particles on

top/bottom of the event-plane and left/right of the perpendicular to the event-
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plane, respectively.

〈

S±
a S

±
b

〉

in−plane
=

〈

NL,R
± (NL,R

± − 1)− 2NL
±N

R
±

〉

〈

S±
a S

±
b

〉

out−plane
=

〈

NT,B
± (NT,B

± − 1)− 2NT
±N

B
±

〉

〈

S∓
a S

±
b

〉

in−plane
=

〈

2NL,R
+ NL,R

− − 2NL
±N

R
∓

〉

〈

S∓
a S

±
b

〉

out−plane
=

〈

2NT,B
+ NT,B

− − 2NT
±N

B
∓

〉

(6.27)

The modulation factor 〈M〉2 for events with radial and elliptic flow only is ana-

lytically given by

〈M〉2in−plane =

[

2

π

(

1 +
2v2
3

)]2

〈M〉2out−plane =

[

2

π

(

1− 2v2
3

)]2

(6.28)

We investigate the sign correlations in two different modulation scenarios.

First we consider the case when the particle φ − Ψ2 distribution is flat (v2 = 0)

and 〈M〉2in−plane = 〈M〉2out−plane =
[

2
π

]2
. This type of modulated sign correlation

(MSC) may be thought of as the full correlation function (〈cos(φa + φb − 2Ψ2)〉)
under the randomization of particle angles preserving only which side of the event-

plane they belong to. The result for this type of modulated sign correlation is

shown in figure 6.12. It is apparent that the full correlation (Eq. 6.25) is well

reproduced by these simpler modulated sign correlations.

Second we consider the case when the particle φ − Ψ2 distribution contains

radial + elliptic flow (v2 6= 0). The modulation factor will now be greater than

2/π for the “in-plane” part and less than 2/π for the “out-plane” part. This

is the more realistic case since surprisingly large amounts of elliptic flow were

indeed discovered at RHIC [Abe08a]. These results are shown in figure 6.13.

The qualitative features of the full correlation are also reproduced by the MSCs

under this modulation scheme (second type). Quantitatively however, we observe
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Figure 6.12: Full correlation function compared to modulated sign correlation

(MSC) of the first type, 〈M〉2in−plane = 〈M〉2out−plane =
[

2
π

]2
. “Full correlation”

stands for the results of figure 6.6. MSC points not shown are out of scale.

Statistical errors only.

that the opposite-sign MSCs are now much larger while the same-sign results

changed marginally. The opposite-sign MSCs, therefore, are much more sensitive

to elliptic flow than the same-sign MSCs.

It is surprising that the magnitude and shape of the main result in figure 6.6

can be reproduced so well within the scheme of just MSCs, i.e. 〈SaSbMaMb〉 →
〈SaSb〉 〈M〉2. The basic agreement between the two is taken to imply that the

main signal of figure 6.6 may equally well be analyzed within the scheme of

MSCs. At this point in the analysis it is still possible that the signal of figure

6.6 is indeed caused by out-of-plane charge separation and therefore evidence for

local parity violation of the strong interactions. We will test this possibility in
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Figure 6.13: Full correlation function compared to modulated sign correlation

(MSC) of the second type, 〈M〉2in−plane >
2
π

2
, 〈M〉2out−plane <

2
π

2
. “Full correla-

tion” stands for the results of figure 6.6. MSC points not shown are out of scale.

Statistical errors only.

the next section by simply counting units of charge separation in the events.

6.5.1 Correlation For Events With Zero Charge Separation

Units of out-of-plane charge separation and in-plane charge separation are re-

spectively defined by

∆Qout = |(NT
+ −NT

−)− (NB
+ −NB

− )| (6.29)

∆Qin = |(NL
+ −NL

−)− (NR
+ −NR

− )| (6.30)

To state that figure 6.6 is solely caused by dynamical out-of-plane charge separa-

tion, it is a necessary condition that there be no signal over the subset of events

with ∆Qout = 0. ∆Qout = 0 may be enforced in two ways: (NT,B
+ − NT,B

− ) = 0,
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or (NT
+ − NT

−) = (NB
+ − NB

− ). Here it is chosen to enforce it in the former way,

(NT,B
+ − NT,B

− ) = 0 since it is the most transparent to handle statistically as we

shall see shortly.

The full correlation function (Eq. 6.16) is a measure of in-plane correlations

minus out-of-plane correlations. If those correlations come from charge separation

∆Q, then it is a measure of ∆Qin correlations minus ∆Qout correlations. In this

light we must calculate the in-plane part of equation 6.26 in events with ∆Qin = 0

and the out-plane part in events with ∆Qout = 0 to be sure that the resulting

correlations are not related to any type of charge separation.

It is shown in appendix C that this type of event-cut will introduce a trivial

statistical bias to opposite-sign correlations but not same-sign correlations. In a

purely statistical model with elliptic flow, the trivial opposite-sign “correlation”

which is brought about from this event-cut is

〈M〉2in−plane − 〈M〉2out−plane

〈N+〉
(6.31)

As the statistical variances of the correlations in figure 6.6 are much much larger

than the mean values it is expected that the simple subtraction of trivial cor-

relations from observed correlations to be sufficient. The statistically corrected

result of the MSCs of the second type over events with ∆Q = 0 (zero charge

separation) is shown in figure 6.14. Strikingly, we see the same qualitative signal

in events with and without charge separation. It is also surprising that we see

a much larger signal in peripheral collisions in events without charge separation.

Although not visible from figure 6.14, for central and mid-central collisions we ob-

serve that the opposite-sign MSCs are negative for both event ensembles shown.

However, this was also observed for the “Full” correlation of figure 6.6.
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Figure 6.14: MSCs of the 2nd type (v2 6= 0) over events with zero charge separa-

tion. Note the larger scale than before. Statistical errors only.

6.6 Discussion and Conclusions

The violation of parity in nature is a profoundly unintuitive concept. It implies

that nature seemingly makes an arbitrary preference of handedness. Prior to

1956 parity conservation in all of physics was taken to be self-evident. Ample

experimental evidence existed to demonstrate its conservation in strong and elec-

tromagnetic interactions but not for weak interactions. In 1956 Lee and Yang

proposed that the then “θ − τ puzzle” was solved by parity non-conservation in

weak interactions [LY56]. They proposed that the θ particle was actually the

same particle as the τ (now known as the charged Kaon) and that the weak

decay of it sometimes violated parity by going into three pions and other times

conserved parity by going into two pions.

In the same paper which resolved the “θ − τ puzzle,” Lee and Yang also
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proposed an experiment to unequivocally prove the violation of parity in weak

interactions. The experiment involved the observation of non-isotropic beta de-

cays from a polarized Co-60 nucleus and was carried out later that year by C.S.

Wu [Wu57]. Since then, many experiments have revealed parity violation of the

weak interactions. The clearest indication of this is that in nature we only see

left-handed neutrinos and no right-handed neutrinos.

The local violation of parity in strong interactions is allowed in the theory of

QCD as well. Heavy-ion collisions at RHIC may locally violate parity in strong

interactions through the axial anomaly of QCD. Whereas parity violation of the

weak interactions was in the global sense, its violation in the strong interactions

is only allowed in the local sense (microscopic domains). That is, in strong

interactions we may violate parity in microscopic domains but integration over

all domains yields no global preference in nature.

Local parity violation of the strong interactions can experimentally mani-

fest itself as charge separation relative to the reaction plane driven by a very

large magnetic field created in non-central collisions. A correlation function,

〈cos(φa + φb − 2Ψ2)〉, was shown to be directly sensitive to this effect and its

measurements were presented in 200 GeV Au+Au collisions. The projection of

the correlation against collision centrality is qualitatively in accord with theoret-

ical predictions for dynamical out-of-plane charge separation. Moreover, physics

processes in existing heavy-ion models which do not incorporate P-odd effects

are unable to reproduce the signal seen in the real data. Cascades, although pre-

senting an interesting possibility of undergoing the Chiral Magnetic Effect, are

not observed to show the same signal due to statistical limitations. It is expected

that with higher statistics a more conclusive statement can be said regarding

cascades.
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The correlation shown against 〈θ〉 of the particle pairs was also presented.

This revealed some inconsistencies with theoretical expectations. Sphaleron emis-

sion directs oppositely charged particles to be back-to-back which would result

in the correlations being peaked at 90◦ or at least flat after multiple scatter-

ing takes place. What is found is that the opposite-sign correlations are neither

peaked at 90◦ nor flat. Instead, the correlation peaks at each end of the theta

range. One interpretation of this without invoking parity violation is that there

exists an odd-number of charge neutral flowing clusters of particles in the events.

It should be odd-numbered so that they only(1) or mostly(3,5...) appear on one

side of the theta range per event. This process, if charge neutral, is completely

orthogonal to the charge separation expected from the Chiral Magnetic Effect.

The correlation function was also studied in a simpler scheme where only

modulated sign correlations across the event-plane were considered, MSCs. These

correlations are still sensitive to the bulk observable of the Chiral Magnetic Effect.

The signal remains much the same in this scheme. All of the features in the full

correlation, which the heavy-ion models were not able to reproduce, are still

present with MSCs. This is taken to imply that the observed signal also needs

to be explained in this scheme just the same as it does in the full correlation

scheme.

To finally assess whether the signal originates from events with non-zero units

of charge separation, we did the inverse and calculated the MSCs over events with

zero charge separation. If our signal was solely caused by dynamical out-of-plane

charge separation then we should have seen a null result. A null result was not

observed however. In fact, the signal became larger in magnitude. This appears to

be evidence for a very significant P-even background which is larger in magnitude

than a P-odd signal which may or may not exist. That is, Bcc 6= Bss in equations
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6.17 and 6.18.

In light of the results obtained here, we do not see any convincing evidence for

dynamical out-of-plane charge separation and local parity violation in the strong

interactions at RHIC. The correlations shown in figure 6.6 do not appear to be

solely or even mostly caused by dynamical out-of-plane charge separation.

We end on a hypothesis as to what else might be causing the signal. First note

that for either 〈cos(φa −Ψ2) cos(φb −Ψ2)〉 or 〈sin(φa −Ψ2) sin(φb −Ψ2)〉, simple

momentum conservation will force each to be negative (NT,B(NT,B−1)−2NTNB <

0 if NT = NB = N/2). For the same-sign correlations of figure 6.7 we do in

fact see this. The reason why the cos()cos() part is larger in magnitude can be

explained by elliptic flow. Elliptic flow will drive more particles in-plane where

the cos()cos() is strongest. Therefore the momentum conservation correlations

would be stronger there. This formalism is in principle also true for the opposite-

sign correlations. However there we see positive and much stronger correlations.

This cannot be explained by modulated momentum conservation. Charge neutral

clusters can give positive correlations. They must also be flowing elliptically for

the cos()cos() part to be larger than the sin()sin() part. To be consistent with

figure 6.10 we must have an odd-number of these clusters typically occurring in

an event, perhaps only 1. Summing this up, it is possible that the interplay of

momentum conservation + particle clusters + v2 could contribute significantly

to the observed correlation shown in figure 6.6.
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CHAPTER 7

Elliptic Flow

The geometrical source of elliptic flow, v2, in heavy-ion collisions is the spatial

eccentricity, ǫ, of the nuclear overlap region in the transverse plane. Through

hydrodynamic rescattering this spatial eccentricity is converted into a momentum

anisotropy over the evolution of the system. The underlying mechanisms for the

conversion are the pressure gradients developed as a consequence of ǫ 6= 0. The

pressure vectors at the surface of region are generally pointed outward but greater

in magnitude along the reaction plane. In principle this may translate into more

particles emitted either along or out (squeeze-out) of the reaction plane. At RHIC

energies, what is predominately found is a surplus of particles along the reaction

plane and not the contrary, that is, positive v2. Since the spatial eccentricity

vanishes rapidly after the moment of the collision, any anisotropy resulting from

it must reflect the physics which existed at the earliest moments of the collision.

This chapter presents measurements of v2 for a variety of particles. Com-

parisons between these results and hydrodynamical calculations will also be pre-

sented. The degree of thermalization and deconfinement attained at RHIC will

then be discussed.
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7.1 The Event Plane Method

The most widespread method of measuring elliptic flow is the event plane method

[PV98]. This method simply replaces the unobservable reaction plane angle with

its approximated value: the event plane angle.

Ψm =









tan−1

∑

i

wi sin(mφi)

∑

i

wi cos(mφi)









/m (7.1)

The event plane angle is determined through the particle distributions themselves.

Elliptic flow in this method is given by

v2{EP} =

N
∑

i

cos 2(φi −Ψm)/N (7.2)

The sum goes over all particles of interest in all events: charged hadrons in

a specific pt bin, K
0
s’s, etc. As mentioned in chapter 4, to achieve the greatest

possible resolution on the flow harmonic under study, one should generally set the

event plane harmonic equal to the flow harmonic. For elliptic flow, Ψm → Ψ2.

Also, since the event plane is determined from the particles themselves, it is

necessary to remove the particle corresponding to φi from the calculation of Ψm

for each summed term in equation 7.2. This removes auto-correlations. Thus,

we have a slightly different Ψi
m for each particle (φi) and equation 7.2 for m=2

should be rewritten as:

v2{EP} =

N
∑

i

cos 2(φi −Ψi
2)/N (7.3)

The event plane method, while being very simple, suffers from all orders of

non-flow contributions. That is, φi may be directly correlated to the particles

constituting Ψi
2 in the above equation. A technique of measuring v2 with direct

particle correlations removed is presented in the next section and is the technique

used in this dissertation.
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7.2 The Cumulant Method

Elliptic flow may be measured with many azimuthal correlation functions. The

class of even-point (2,4,6,...) particle correlations used in v2 cumulant analyses is

given below in equation 7.4.

〈

ei2(φ1−φ2)
〉

,
〈

ei2(φ1+φ2−φ3−φ4)
〉

,
〈

ei2(φ1+φ2+φ3−φ4−φ5−φ6)
〉

, ..... (7.4)

The averages are computed in 2 steps. First, one averages over all particles in

an event to obtain an event average. Second, one averages the event averages

over all events. The odd-point (1,3,5,...) particle correlations are given below in

equation 7.5.

〈

ei2(φ1)
〉

,
〈

ei2(±φ1∓φ2∓φ3)
〉

,
〈

ei2(±φ1±φ2∓φ3∓φ4∓φ5)
〉

, ..... (7.5)

Unlike the even-point functions, all the odd-point functions vanish in the case of

perfect azimuthal detector acceptance. In general, all the terms with an unequal

amount of positive and negative signs in the above equations vanish in the case

of perfect acceptance. Some even-point functions will also vanish for that reason,

i.e.
〈

ei2(φ1+φ2)
〉

. The terms in equations 7.4 and 7.5 constitute the components of

the cumulants.

To see their relation to elliptic flow, we consider the special case where the

only correlations present are due to elliptic flow. In this case, the 2-particle

correlation function may be rewritten as (considering the real parts only):

〈

ei2(φ1−φ2)
〉

=
〈

ei2(φ1−Ψr−φ2+Ψr)
〉

=
〈

ei2(φ1−Ψr)
〉 〈

e−i2(φ2−Ψr)
〉

= v22 (7.6)

Similarly,
〈

ei2(φ1+φ2−φ3−φ4)
〉

= v42, and so on. The cumulants are constructed in

the next two subsections.
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7.2.1 Integrated Cumulant

The elliptic flow averaged over an entire range, such as pt, is called the integrated

elliptic flow. The integrated 2-particle cumulant is defined as [BDO01]:

〈〈

ei2(φ1−φ2)
〉〉

=
〈

ei2(φ1−φ2)
〉

−
〈

ei2φ1

〉 〈

e−i2φ2

〉

(7.7)

The double angle-brackets signify the cumulant. The 2-particle cumulant can be

seen as the 2-particle correlations with 1-particle “correlations” (detector effects)

subtracted off. The integrated v2’s relationship to the 2-particle cumulant may

be seen from equation 7.6 and may be extracted with the following equation.

v2 =
〈〈

ei2(φ1−φ2)
〉〉1/2

(7.8)

This equation is only valid when the detectors acceptance is isotropic. STAR’s

acceptance is taken to be isotropic enough to use this equation. If a detectors

acceptance is far from isotropic then the 2-particle cumulant is no longer purely

a function of v2 but also a function of v1; a mixture of harmonics.

The integrated 4-particle cumulant for the case of perfect acceptance is defined

as:

〈〈

ei2(φ1+φ2−φ3−φ4)
〉〉

=
〈

ei2(φ1+φ2−φ3−φ4)
〉

−
〈

ei2(φ1−φ3)
〉 〈

ei2(φ2−φ4)
〉

−
〈

ei2(φ1−φ4)
〉 〈

ei2(φ2−φ3)
〉

(7.9)

The 4-particle cumulant can be understood as a 4-particle correlation with 2-

particle correlations subtracted off. The subtraction removes “direct” correlations

between particles 1 and 3, 2 and 4, 1 and 4, 2 and 3. Here “direct” correlations

represent correlations not related to the reaction-plane. For instance, two daugh-

ters from a resonance decay are directly correlated through their opening angle.

Thus, the 4-particle cumulant is not susceptible to 2-particle non-flow. That is
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its virtue and advantage over the event plane method of the preceding section.

In general, for an even integer n, the n-particle cumulant removes all direct n-2

particle correlations. However, statistical uncertainties get larger and larger with

higher order cumulants.

Since particles 1-4 all come from the same pool of particles, equation 7.9 may

be symmetrized:

〈〈

ei2(φ1+φ2−φ3−φ4)
〉〉

=
〈

ei2(φ1+φ2−φ3−φ4)
〉

− 2
〈

ei2(φ1−φ3)
〉2

(7.10)

The 4-particle cumulant is related to v2 through the following equation:

〈〈

ei2(φ1+φ2−φ3−φ4)
〉〉

= v42 − 2(v22)
2 = −v42 (7.11)

This relation is only valid for the case of isotropic acceptance. STAR’s acceptance

is taken to be isotropic enough to use this relation. The 4-particle cumulant

expression itself must also be modified to account for imperfect acceptance. The

full 4-particle cumulant for imperfect acceptance is given below (real parts only).

〈〈

ei2(φ1+φ2−φ3−φ4)
〉〉

=
〈

ei2(φ1+φ2−φ3−φ4)
〉

− 2
〈

ei2(φ1−φ3)
〉 〈

ei2(φ2−φ4)
〉

−
〈

ei2φ1

〉 〈

ei2(φ2−φ3−φ4)
〉

−
〈

ei2φ2

〉 〈

ei2(φ1−φ3−φ4)
〉

− 2
〈

e−i2φ3

〉 〈

ei2(φ1+φ2−φ4)
〉

−
〈

ei2(φ1+φ2)
〉 〈

e−i2(φ3+φ4)
〉

+ 4
〈

ei2φ1

〉 〈

e−i2φ3

〉 〈

ei2(φ2−φ4)
〉

+ 4
〈

ei2φ2

〉 〈

e−i2φ3

〉 〈

ei2(φ1−φ4)
〉

+ 2
〈

ei2φ1

〉 〈

ei2φ2

〉 〈

e−i2(φ3+φ4)
〉

+ 2
〈

e−i2φ3

〉 〈

e−i2φ4

〉 〈

ei2(φ1+φ2)
〉

− 6
〈

ei2φ1

〉 〈

ei2φ2

〉 〈

e−i2φ3

〉 〈

e−i2φ4

〉

(7.12)
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This expression is general and may be used even for detectors with poor azimuthal

acceptance as it naturally subtracts out “correlations” induced by a detector. The

general idea is to subtract off all possible ways of factoring the 4-particle term.

The coefficients for any given term may be derived by summing up the number

of different ways the terms above it may be factored to yield that term (start

from the 2nd term and work your way down). Equation 7.12 is symmetrized in

the case that particles 2-4 come from the same particle pool. It may be further

symmetrized if particle 1 comes from that same pool. Particle 1 is left distinct

for equation 7.12 to be useful in the next subsection. The full 4-particle cumulant

expression of equation 7.12 is the form which is used for all v2{4} measurements

shown in this dissertation.

7.2.2 Differential Cumulant

The elliptic flow averaged over particles within a narrow range–of pt for instance–

is called the differential elliptic flow. The differential 2-particle cumulant is simply

equation 7.7 with the first particle drawing from the differential pool of particles

and the second particle drawing from outside of that pool. That is, the differ-

ential 2-particle cumulant is formed by replacing φ1 with Φ (particles from the

differential pool):

〈〈

ei2(Φ−φ2)
〉〉

=
〈

ei2(Φ−φ2)
〉

−
〈

ei2Φ
〉 〈

e−i2φ2

〉

(7.13)

To see how the differential 2-particle cumulant is related to elliptic flow, we use

the same technique that went into equation 7.6.

〈〈

ei2(Φ−φ2)
〉〉

= v′2v2 (7.14)

where v′2 and v2 is the elliptic flow coming from particle Φ and φ, respectively.

Likewise, the full 4-particle differential cumulant is given by equation 7.12 with
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φ1 replaced by Φ. It’s relationship to elliptic flow is given below.

〈〈

ei2(Φ+φ2−φ3−φ4)
〉〉

= v′2v
3
2 − 2(v′2v2)(v

2
2) = −v′2v32 (7.15)

Again, this relationship will be modified if a detector’s acceptance is poor. Given

the relations in equation 7.15 and 7.11, we can now extract the 4-particle cumu-

lant differential elliptic flow, v′2{4} ≡ v′2.

v′2{4} ≡ v′2 =
−
〈〈

ei2(Φ+φ2−φ3−φ4)
〉〉

(−〈〈ei2(φ1+φ2−φ3−φ4)〉〉)3/4 (7.16)

It should be stressed again that the particle pool from which Φ draws from is

orthogonal to the particle pool from which φ draws from. That is, if Φ is a charged

hadron with 1.2 < pt < 1.4 GeV/c, then φ is all other charged hadrons outside

of that pt range. Therefore, the differential as well as the integrated cumulant is

unique for every single differential bin!

7.2.3 Cumulant Weights

Two types of weights are applied to each of the averages in equation 7.12. The

first, W1 is a pt weight formed from the product of the pt’s of all particles. This is

designed to improve the accuracy of a flow measurement as particles with higher

pt have greater flow. The second, W2 is an Npoi (particle of interest) weight. This

is designed to enhance the contribution from events with more particles of interest,

i.e. charged hadrons within a narrow pt range. The weights are mathematically

shown below.

Wtotal = W1W2

W1 =

Npoints
∏

i

wpt,i

W2 = Npoi (7.17)
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wpt,i =







pt,i if pt,i < 2

2 otherwise

Npoints is the number points in the particular average (1,2,3 or 4). A saturation

cut-off is also applied to the pt weights. This is inspired by the experimentally

observed saturation of v2 versus pt for pt > 2 GeV/c. Both integrated and

differential cumulants are weighted exactly the same.

7.2.4 Practicality: Evaluating a 4-particle Loop with 2-particle Loops

The first term to evaluate in equation 7.12 is a 4-particle correlation,
〈

ei2(φ1+φ2−φ3−φ4)
〉

.

Practically speaking, it is unfeasible to use a nested 4-loop to compute it (too

much cpu time). To evaluate it, one can use a simple math trick.

〈

ei2(φ1+φ2−φ3−φ4)
〉

=
(
∑

ei2(φi−φj))(
∑

ei2(φk−φl))− degeneracies

N(N − 1)(N − 2)(N − 3)
(7.18)

The term, degeneracies, represents all instances where particle i = particle k

or l and all instances where particle j = particle k or l in the product of sums,

(
∑

ei2(φi−φj))(
∑

ei2(φk−φl)). There will be (N(N − 1))2−N(N−1)(N−2)(N−3)

degenerate terms. For the case where particles 1-4 all come from the same pool

(integrated flow case) they are given by:

degeneracies =
∑

(

ei2(φi−φj)
)2

+ 2
(

∑

ei2(φi−φj)ei2(φi−φk)
)

+ 2
(

∑

ei2(φi−φj)ei2(φk−φi)
)

(7.19)

The evaluation of the last two terms in equation 7.19 requires a nested 3-particle

loop, which is still too time consuming. The same trick is applied to each of these
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terms. For instance:

(

∑

ei2(φi−φj)ei2(φi−φk)
)

=
(

∑

ei2(2φi−φj)e−i2φk

)

=
(

∑

ei2(2φi−φj)
)(

∑

e−i2φi

)

−
(

∑

ei4(φi−φj)
)

−
(

∑

ei2(φi−φj)
)

(7.20)

7.3 Results: Charged Hadron v2

The 2-particle and 4-particle cumulant elliptic flow versus pt averaged over all

charged hadrons directly seen in the TPC (p±, π±, K±) is shown in the upper

part of figure 7.1. 18.5 M minimum bias events from STAR’s 2007 AuAu 200GeV

run were used. Only mid-central collisions are used, 10-40%. Error bars represent

statistical uncertainties only. For both cumulants, v2 is observed to first rise with

pt until a saturation point is reached at around 3 GeV/c. The difference between

v2{2} and v2{4} illustrates the effect of direct 2-particle correlations (2-particle

non-flow). As already mentioned, v2{2} is susceptible to 2-particle non-flow while

v2{4} is not. The percentage of 2-particle non-flow in v2{2} is estimated in the

lower part of figure 7.1. This may be regarded as the systematic error of v2{2},
δv2{2}. The systematic error for v2{4} should be on the order of (δv2{2})3

[BDO01] which is much smaller. We see that the percentage versus pt is mostly

flat. At high pt we see a slight rise in the percentage which might be caused by jet

correlations as jet related hard processes dominate the high pt region. The larger

statistical error bars for the higher order cumulants are generally to be expected

as the percentage contribution from flow to order-n particle correlations decreases

with n.
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Figure 7.1: Top figure: v2{2} and v2{4} versus pt averaged over all charged

hadrons in the TPC. Bottom figure: (v2{2} − v2{4})/v2{4} versus pt. 10-40%

centrality.

7.4 Results: Pion, Kaon, and Proton v2

Charged pions, kaons, and protons can be identified in the TPC at low momen-

tum. Particle identification is done with a 2-sigma cut on the particle’s dE/dx

deviation from its respective mean value: for particle i, |σi| < 2. Furthermore,

we require that the particle is 2-sigma away from both of the other two parti-

cle’s bands: for particle j 6= i, |σj 6=i| > 2. v2{2} and v2{4} versus pt for pions,
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kaons, and protons in 4 different centrality bins are shown in figures 7.2 and 7.3.

Data-set details are the same as those for the charged hadron results.

Figure 7.2: v2{2} for pions(π− + π+), kaons(k− + k+), and protons(p+).

Figure 7.3: v2{4} for pions(π− + π+), kaons(k− + k+), and protons(p+).
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Several features of figures 7.2 and 7.3 are to be pointed out. Firstly, for both

cumulant types and for every centrality bin we see a mass ordering of elliptic

flow over the covered pt region: particles of higher mass have a smaller v2. Only

the lowest pt data-point for kaons appears to violate this. Secondly, in the most

central collisions we observe the smallest magnitude of v2. This is largely due

to the smaller initial geometrical eccentricities in central collisions. Thirdly, we

see that v2{4} retains the same basic functional shape as v2{2} and that v2{4} is

smaller in magnitude everywhere. Although not shown, anti-proton and proton

v2 are observed to be consistent with each other except at low-pt (pt < .6) where

anti-proton v2 is observed to be slightly smaller.

7.5 Results: K0

s
,Λ,Ξ±, v2

Elliptic flow measurements of topologically reconstructed particles must be done

in two parts. First, one must measure v2 from particle candidates within a certain

invariant mass range of the particle’s mass peak. This will contain contributions

from both true particle candidates and false candidates. Second, one must mea-

sure v2 from false particle candidates only to form a background v2 measurement.

The two terms are then subtracted from each other with proportions determined

by the signal to background ratio. This algorithm is mathematically described

by:

vSig+Bkg
2 =

Sig

Sig +Bkg
vSig2 +

Bkg

Sig +Bkg
vBkg
2

vSig2 = αvSig+Bkg
2 − (α− 1) vBkg

2

α =
Sig +Bkg

Sig
(7.21)

Here, the background v2 is taken from a narrow range on either side of the par-

ticle’s mass peak. The signal+background v2 is taken from a 3σ mass window
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around the peak. This is illustrated with figure 7.4. The blue(darkest) region

Figure 7.4: Signal and Background regions for the case of Lambdas from 0-80%

centrality.

denotes the true candidates which are indistinguishable from the false candi-

dates directly underneath. Together, the true + false candidate region form the

signal+background region. The gray(lightest) regions on either side denote the

background region. This extraction technique assumes that the background v2

functional form does not change rapidly a function of invariant mass.

v2{2} results for K0
s , Λ and Ξ± are shown in figure 7.5. Data set details

are the same as those for the charged hadron results. Reconstruction of these

particles is done with the cuts outlined in chapter 5. Error bars are statistical

only. Two features are to be pointed out. One, there appears to be different

saturation levels at high pt for baryons and mesons. Two, there appears to be a

mass-ordering at low pt with heavier particles having smaller v2.

v2{4} results for K0
s , Λ and Ξ± are shown in figure 7.6. Quantitatively, one

observes a smaller elliptic flow with the 4-particle approach. Qualitatively, one

again observes the same two features: differing baryon/meson saturation levels
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Figure 7.5: v2{2} results for K0
s , Λ and Ξ±. 10− 40% centrality.

Figure 7.6: v2{4} results for K0
s , Λ and Ξ±. 10− 40% centrality.
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and mass-ordering at low pt. Thus, we may safely conclude that these two fea-

tures are not caused by 2-particle non-flow which is a major source of systematic

uncertainties in the more commonly used event plane method of flow analyses.

7.6 Discussion and Conclusions

Elliptic flow is a very useful tool in the understanding of early time dynamics

in heavy-ion collisions. Multi-particle cumulants can be used to measure elliptic

flow and typically have been calculated using an indirect method of generating

functions [BDO01]. Here, a method for evaluating them directly using multi-

particle correlations was presented.

One of the most striking features observed at STAR is the grouping of all

baryon v2 different from all meson v2 at high pt (pt > 2.5 GeV/c) [Abe08a].

Figure 7.6 shows for the first time that the same feature appears to persist with

v2{4} and is therefore not caused by 2-particle non-flow. This observed feature

is most commonly explained through the coalescence model of hadron forma-

tion. In this model, the relevant degrees of freedom are not partons but massive

(dressed) valence quarks [MV03]. Hadrons form via the coalescence of quarks

such that the invariant spectra of hadrons is proportional to the product of in-

variant constituent-quark spectra.

dNB

d2pt
(~pt) = CB (pt)

[

dNq

d2pt

(

~pt
3

)]3

dNM

d2pt
(~pt) = CM (pt)

[

dNq

d2pt

(

~pt
2

)]2

(7.22)

The subscripts M, B, and q represent mesons, baryons, and quarks, respectively.

CB and CM are the probabilities for qqq →baryon and qq̄ →meson coalescence.

The elliptic flow of baryons and mesons is then inherited from the elliptic flow of

their constituent quarks. If the constituent quarks have only elliptical anisotropy,
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its spectrum is given by

dNq

ptdptdΦ
=

(

1

2π

)

dNq

ptdpt
[1 + 2v2,q cos (2Φ)] (7.23)

where Φ is the azimuthal angle of the quark relative to the reaction plane. In-

serting equation 7.23 into 7.22 and averaging over cos (2Φ) one obtains:

v2,B (pt) =
3v2,q (pt/3) + 3v32,q (pt/3)

1 + 6v22,q (pt/3)

v2,M (pt) =
2v2,q (pt/2)

1 + 2v22,q (pt/2)
(7.24)

In the case of small v2, these equations reduce to

v2,B (pt) = 3v2,q (pt/3)

v2,M (pt) = 2v2,q (pt/2) (7.25)

The validity of a coalescence model is questionable when the constituent phase-

space density is very large (low pt) and when pt is very large (high pt). For

very large phase-space densities, hadronization can occur with very large relative

momenta (ignored in equation 7.22). For high pt, the fragmentation process of

hadronization dominates over coalescence. Nonetheless, we may rescale the entire

x and y axes of figures 7.5 and 7.6 by a factor of 2 for K0
s and a factor of 3 for

Λ and Ξ±. Figure 7.7 and 7.8 shows this rescaling done for v2{2} and v2{4},
respectively. While the NCQ scaling is not perfect, all three particles tend to

generally follow the same trend for both cumulant types. This is the first time

NCQ scaling has been observed in 4-particle cumulants. An observation of NCQ

scaling implies that quarks are the underlying degrees of freedom in the matter

created in 200 GeV AuAu collisions at RHIC. Furthermore, it implies that these

quarks have a collective elliptic flow and that quark deconfinement is achieved at

RHIC.
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Figure 7.7: v2{2}/NCQ versus pt/NCQ for K0
s , Λ and Ξ±

Figure 7.8: v2{4}/NCQ versus pt/NCQ for K0
s , Λ and Ξ±
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The coalescence model has also been applied to the invariant pt spectrum of

multi-strange hadrons to extract the quark pt spectrum in a QGP phase [Che08].

Assuming that all hadrons are produced via the coalescence of quarks, one first

scales the x and y axes of the pt spectra of Ξ(ssd), Ω(sss), and φ(ss) by NCQ.

Second, one takes the ratio of Ω to φ and Ξ to φ to obtain the s and d quark spec-

tra, respectively. This revealed that s quarks had a significantly flatter spectrum

than d quarks which is consistent with hydrodynamics in a deconfined phase.

The v2{4} results for π±, p±, K0
s , Λ, and Ξ are now compared to hydrody-

namical models. Hydrodynamics data come from Pasi Huovinen [Huo05]. Only

the 4-particle cumulant results are included in this comparison as they are a more

accurate measure of v2. The type of hydrodynamics considered here is that of a

equilibrated liquid where thermodynamics applies. Three hydrodynamical mod-

els are considered here. Hydrodynamics data come from private communications

with Pasi Huovinen [Huo05]. All are based on a so-called “2+1” dimensional

approach whose equations are simpler to solve analytically than the full “3+1”

approach. That is, calculations are done in 2 spatial dimensions (transverse

plane) + time with the added assumption of longitudinal boost invariance. Vis-

cous effects are not included in these models.

The first treats the matter in the collision region merely as a gas of hadrons

and resonances, a hadron resonance gas (HRG) [Huo05]. It has been shown that

an interacting hadron gas phase can be well approximated by a non-interacting

hadron gas with the inclusion of free resonances [Huo05]. No QGP phase tran-

sition is included in the HRG model. The equation of state (EoS) is one of a

“bag-model.”

The second treats the matter in the collision region as a “soup” of quarks and

gluons (Q). A 1st order QGP phase transition at T=170 MeV is included in the
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Q model. Chemical equilibrium is also assumed throughout the entire evolution

up until kinetic freeze-out.

The third contains a lattice QCD inspired EoS (s95p-PCE). A smooth cross-

over to a QGP phase is included. The entropy density is constrained to be 95%

of the Stefan-Boltzmann limit at T=800 MeV. Partial chemical equilibrium is

allowed.

Pion and proton v2{4} is compared to all three hydrodynamical models in

figures 7.9 and 7.10, respectively. K0
S, Λ, and Ξ are compared to all three hydro-

dynamical models in figures 7.11, 7.12, and 7.13, respectively.

It is observed that none of the three hydro models can completely describe the

data. Of the three, EoS Q best describes the data at low pt. All models diverge

largely from data at high pt (pt > 2 GeV/c) indicating that ideal hydrodynamics

may no longer be valid after a certain point in pt. The presence of viscosity

(non-ideal) could change this interpretation greatly. The models used here do

not include viscous effects. The inclusion of viscosity in hydrodynamics tends to

suppress the development of elliptic flow as it reduces the number of scattering

events a particle may undergo in the medium created in heavy-ion collisions.

Currently, it is not well understood how to unambiguously treat viscosity in

hydrodynamic calculations and so comparisons to viscous hydro cannot be made

at this moment.

Still, the agreement between the data and the EoS Q hydrodynamical model

seems to suggest that some amount of bulk-collectivity (thermalization) is es-

tablished for low-pt particles in 200 GeV AuAu collisions at RHIC. It is difficult

to tell exactly how much thermalization is actually attained since viscous correc-

tions will also drive v2 to the smaller values observed here. What is clear however

is that past RHIC v2 measurements based on 2-particle methods (similar to 2-
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Figure 7.9: π± v2{4} compared to three hydrodynamical models. Real data are

shown by red hollow circles. 10− 40% centrality.
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Figure 7.10: p+ v2{4} compared to three hydrodynamical models. Real data are

shown by blue hollow triangles. 10− 40% centrality.
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Figure 7.11: K0
s versus pt data versus hydrodynamical model comparison. Real

data are shown by solid blue circles. 10− 40% centrality.
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Figure 7.12: Λ versus pt data versus hydrodynamical model comparison. Real

data are shown by solid red circles. 10− 40% centrality.
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Figure 7.13: Ξ± versus pt data versus hydrodynamical model comparison. Real

data are shown by solid pink circles. 10− 40% centrality.
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particle cumulants) had overestimated the magnitude of the true v2. Incomplete

thermalization and viscosity now seem to be real possibilities at RHIC.

The phenomenon of the mass hierarchy observed for both cumulant types at

low-pt also appears in the hydrodynamical models presented here. The initial

spatial eccentricity of the nuclear overlap region induces elliptic flow for all parti-

cles. In the proceeding hydrodynamical evolutionary stage heavier particles gain

more momentum than lighter particles through multiple scattering. Therefore,

the v2 “rise” observed in the data is effectively pushed to higher momentum for

more massive particles. This leads to a mass hierarchy [Vol97][Huo01].

However, it is also interesting to note that a mass hierarchy at low pt can

also arise after the hydrodynamic stage in a coalescence model of hadronization

[MV03] (assuming its validity in this pt range). This comes about as heavier

hadrons can be formed from quarks with larger relative momentum such that

when they coalesce, their v2 can interfere destructively. This feature was ignored

in equation 7.22.

Elliptic flow continues to be a very useful tool in understanding early-time

dynamics of heavy-ion collisions. Identified particle elliptic flow will soon be

extended much further in pt with the time of flight (TOF) upgrade at STAR.

This will allow for a more critical comparison to future hydrodynamic models

with viscosity and shed more light on the issue of viscosity and thermalization in

heavy-ion collisions. Also, the LHC will soon collide Pb ions at an energy over

∼30 times higher than the highest energy at RHIC. It is expected for elliptic

flow to continue to rise at these higher energies as viscous effects are expected to

decrease.

99



APPENDIX A

QCD and its Vacua

The part of the SU(3)×SU(2)×U(1) invariant standard model Lagrangian deal-

ing only with the intaractions of quarks and gluons is the subject of Quantum

Chromodynamics. The SU(3) invarient QCD Lagrangian is given by:

LQCD = −1

4
F (a)
µν F

(a)µν + i
∑

q

ψ̄i
qγ

µ(Dµ)ijψ
j
q −

∑

q

mqψ̄
j
qψqi (A.1)

where

F (a)
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν (A.2)

and

(Dµ)ij = δij∂µ + igs
∑

a

λaij
2
Aa

µ (A.3)

gs is the QCD coupling constant. fabc is the SU(3) group theory factor. λaij is

a particular matrix element(i, j) of the element a in the SU(3) group.

The vacuum structure of QCD is studied when we only consider the first term

of equation A.1. The topological charge of the vacuum is given by

ν =
g2

32π2

∫

d4xF a
µνF̃

a
µν (A.4)

The solution with ν = 1 in Euclidean space is given by [Hoo76]

Aa
µ(x) =

2

g

ηaµν(x− x0)
ν

(x− x0)2 + λ2
(A.5)
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x0 is free because of translational invarience. λ is a free scale parameter and η is

a tensor which maps antisymmetric representations of SO(4) onto vectors of one

of its two invarient subgroups SO(3):

ηaµν = ǫaµν(a, µ, ν = 1, 2, 3)

ηa4ν = −δaν(a, ν = 1, 2, 3)

ηaµ4 = δaµ(a, µ = 1, 2, 3)

ηa44 = 0 (A.6)
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APPENDIX B

Landau Levels

For a uniform applied magnetic field H in the z-direction the vector potentials

can be given by:

Ax = −Hy

Ay = Az = 0 (B.1)

The quantized wave functions for a particle in an applied magnetic field are given

by the Landau eigenfunctions:

ψn = e(i/h̄)(pxx+pzz)χn(y) (B.2)

χn(y) =
1

π1/4a
1/2
H

√
2nn!

[

e−(y−y0)
2/2a2

H

]

Hn

(

y − y0
aH

)

(B.3)

Hn(x) are the Hermite polynomials. H0-H3 are given below.

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x (B.4)
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APPENDIX C

Statistical Bias

The event cut applied at the end of chapter 6 for the out-of-plane analysis is

NT
+ = NT

− (C.1)

NB
+ = NB

− (C.2)

For the in-plane analysis we just replace (T,B) with (L,R) in the above equations.

We now check to see if any statistical bias is introduced with these constraints

for the case of fixed multiplicity M first. The same-sign number correlations are

proportional to
〈

NT,B
± (NT,B

± − 1)− 2NT
±N

B
±

〉

(C.3)

which equals zero for a purely statistical distribution of charges. We now impose

the constrains of D.1 and D.2 on D.3 and obtain

〈

NT,B
± (NT,B

± − 1)− 2NT
±N

B
±

〉

=
〈

2NT,B
+ (NT,B

+ − 1)− 4NT
+N

B
+

〉

= 2
〈

NT,B
+ (NT,B

+ − 1)− 2NT
+N

B
+

〉

= 0 (C.4)

since NT
+ is still allowed to freely fluctuate. The opposite-sign correlations are

proportional to
〈

2NT,B
+ NT,B

− − 2NT
±N

B
∓

〉

(C.5)
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Now we impose the constraints of D.1 and D.2 and obtain

〈

2NT,B
+ NT,B

− − 2NT
±N

B
∓

〉

=
〈

2(NT
+)

2 + 2(NB
+ )2 − 2NT

+(N− −NT
−)− 2NB

+ (N− −NB
− )
〉

=
〈

4(NT
+)

2 + 4(NB
+ )2 − 2NT

+N− − 2NB
+N−

〉

=
〈

8(NT
+)

2 − 4NT
+N−

〉

= 8
[

σ2 +
〈

NT
+

〉2
]

− 4

2
N2

+

= 8

[

N+p(1− p) +
N2

+

4

]

− 2N2
+

= 2N+ (C.6)

Here the binomial variance σ was inserted with p=.5 (the probability for a particle

to be on top or bottom). The number correlations are then given by

〈

2NT,B
+ NT,B

− − 2NT
±N

B
∓

〉

2N+N−
=

1

N−

=
1

N+
(C.7)

So, we have found that the opposite sign-correlations recieve a statistical bias

with this event cut. This result was for a fixed multiplicity M. We wish to now

average this bias over all M within a standard centraliy bin. The multiplicity

distribution for the Glauber Monte Carlo model of heavy-ion collisions is shown

in figure D.1. The x-axis represents the total multiplicity N++N−. For the event

cut, N+ = N−, so we must scale the x-axis by a factor of .5. Using the standard

centrality definitions at STAR and incorporating the modulation factors of MNCs

of the second type we obtain the final form of the statistical bias which is to be

removed from the observed correlation under the event cut.

[

〈M〉2in−plane − 〈M〉2out−plane

]

〈

1

N+

〉

(C.8)
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Figure C.1: Glauber Monte Carlo distribution of events vs. particle multiplicity

in |η| < .5.

The averages are taken only over the multiplicities of a given centrality bin.

Also, since the fiducial range used in chapter 6 is |η| < 1 whereas the multi-

plicty displayed on the x-axis of figure D.1 is for |η| < .5 we must scale up the

multiplicities. The final scaling factors and the final statistical bias values ob-

tained for each centrality bin are given below. Figure 6.14 reports the observed

opposite-sign correlations minus these values.
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Table C.1: Opposite-sign statistical bias values

Centrality Scale factor Statistical bias value

0-5% 1.79/2 .00007

5-10% 1.86/2 .0001

10-20% 1.96/2 .0002

20-30% 2.08/2 .0003

30-40% 2.19/2 .0005

40-50% 2.32/2 .00097

50-60% 2.45/2 .00178

60-70% 2.54/2 .0038

70-80% 2.55/2 .01
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